{"title":"基于物理建模的基于mea的CO2电解槽质量和热管理策略","authors":"Huanlei Zhang, Jieyang Li, Meng Lin","doi":"10.1039/d5cp02167g","DOIUrl":null,"url":null,"abstract":"Membrane electrode assembly (MEA)-based CO<small><sub>2</sub></small> electrolyzers are promising for electrochemical CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) due to their compact design and high current densities. However, performance and durability are often limited by mass transport constraints, thermal gradients, and salt precipitation. We present a comprehensive, non-isothermal, physics-based model that captures multiphase transport of gaseous, liquid, and ionic species, coupled with heat generation, electrochemical reactions, and phase transitions within an MEA-based CO<small><sub>2</sub></small> electrolyzer. This model predicts key performance indicators, including CO faradaic efficiency, energy and mass conversion efficiencies, electrode flooding, and salt precipitation. Simulation results identify optimal operating strategies: cathode-side cooling at 10 °C, elevated pressure at 8 atm, and anode-side heating at 80 °C, collectively improving energy efficiency by 42.4% compared to baseline conditions. These findings underscore the importance of precise thermal and mass transport management in advancing scalable CO<small><sub>2</sub></small> electrolyzer technologies.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"3 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass and thermal management strategies for MEA-based CO2 electrolyzers enabled by physics-based modeling\",\"authors\":\"Huanlei Zhang, Jieyang Li, Meng Lin\",\"doi\":\"10.1039/d5cp02167g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Membrane electrode assembly (MEA)-based CO<small><sub>2</sub></small> electrolyzers are promising for electrochemical CO<small><sub>2</sub></small> reduction (CO<small><sub>2</sub></small>R) due to their compact design and high current densities. However, performance and durability are often limited by mass transport constraints, thermal gradients, and salt precipitation. We present a comprehensive, non-isothermal, physics-based model that captures multiphase transport of gaseous, liquid, and ionic species, coupled with heat generation, electrochemical reactions, and phase transitions within an MEA-based CO<small><sub>2</sub></small> electrolyzer. This model predicts key performance indicators, including CO faradaic efficiency, energy and mass conversion efficiencies, electrode flooding, and salt precipitation. Simulation results identify optimal operating strategies: cathode-side cooling at 10 °C, elevated pressure at 8 atm, and anode-side heating at 80 °C, collectively improving energy efficiency by 42.4% compared to baseline conditions. These findings underscore the importance of precise thermal and mass transport management in advancing scalable CO<small><sub>2</sub></small> electrolyzer technologies.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp02167g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp02167g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mass and thermal management strategies for MEA-based CO2 electrolyzers enabled by physics-based modeling
Membrane electrode assembly (MEA)-based CO2 electrolyzers are promising for electrochemical CO2 reduction (CO2R) due to their compact design and high current densities. However, performance and durability are often limited by mass transport constraints, thermal gradients, and salt precipitation. We present a comprehensive, non-isothermal, physics-based model that captures multiphase transport of gaseous, liquid, and ionic species, coupled with heat generation, electrochemical reactions, and phase transitions within an MEA-based CO2 electrolyzer. This model predicts key performance indicators, including CO faradaic efficiency, energy and mass conversion efficiencies, electrode flooding, and salt precipitation. Simulation results identify optimal operating strategies: cathode-side cooling at 10 °C, elevated pressure at 8 atm, and anode-side heating at 80 °C, collectively improving energy efficiency by 42.4% compared to baseline conditions. These findings underscore the importance of precise thermal and mass transport management in advancing scalable CO2 electrolyzer technologies.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.