选择性剪接柠檬酸合酶支持结直肠癌

IF 16.6 1区 医学 Q1 ONCOLOGY
Désirée Schatton, Christian Frezza
{"title":"选择性剪接柠檬酸合酶支持结直肠癌","authors":"Désirée Schatton, Christian Frezza","doi":"10.1158/0008-5472.can-25-3356","DOIUrl":null,"url":null,"abstract":"Metabolic changes are a major hallmark of cancer with the mitochondrial tricarboxylic acid (TCA) cycle playing a central role in this process. Remodeling of the TCA cycle occurs in cancer cells to sustain the increased anabolic and energetic demands required to grow, proliferate, and metastasize. Alternative splicing (AS) is increasingly recognized as a key regulator of cancer metabolism, yet its specific impact on TCA cycle enzymes remains unclear. In this issue of Cancer Research, Cheung and colleagues describe a novel splicing isoform of citrate synthase (CS), termed CS-ΔEx4, which is highly expressed in colorectal cancer. This CS-ΔEx4 isoform forms heterocomplexes with full-length CS, enhancing CS activity and promoting the metabolic reprogramming characteristic of malignancy. Overexpression of CS-ΔEx4 increases mitochondrial respiration and drives glycolytic carbon flux toward TCA intermediates, resulting in elevated levels of the metabolite 2-hydroxyglutarate. Mechanistically, this increase in 2-hydroxyglutarate, facilitated by increased activity of phosphoglycerate dehydrogenase, leads to epigenetic alterations that support oncogenic gene expression and tumor progression. Suppression of CS-ΔEx4 or pharmacologic inhibition of its activity reverts these metabolic and epigenetic changes, reducing cancer cell survival and metastatic potential. These findings establish a direct link between AS of a core metabolic enzyme and the emergence of cancer hallmarks, suggesting that targeting AS-derived variants like CS-ΔEx4 may represent a promising therapeutic strategy for colorectal cancer and potentially other malignancies in which such isoforms are expressed. See related article by Cheung et al., p. XX","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"109 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternatively Spliced Citrate Synthase Supports Colorectal Cancer\",\"authors\":\"Désirée Schatton, Christian Frezza\",\"doi\":\"10.1158/0008-5472.can-25-3356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic changes are a major hallmark of cancer with the mitochondrial tricarboxylic acid (TCA) cycle playing a central role in this process. Remodeling of the TCA cycle occurs in cancer cells to sustain the increased anabolic and energetic demands required to grow, proliferate, and metastasize. Alternative splicing (AS) is increasingly recognized as a key regulator of cancer metabolism, yet its specific impact on TCA cycle enzymes remains unclear. In this issue of Cancer Research, Cheung and colleagues describe a novel splicing isoform of citrate synthase (CS), termed CS-ΔEx4, which is highly expressed in colorectal cancer. This CS-ΔEx4 isoform forms heterocomplexes with full-length CS, enhancing CS activity and promoting the metabolic reprogramming characteristic of malignancy. Overexpression of CS-ΔEx4 increases mitochondrial respiration and drives glycolytic carbon flux toward TCA intermediates, resulting in elevated levels of the metabolite 2-hydroxyglutarate. Mechanistically, this increase in 2-hydroxyglutarate, facilitated by increased activity of phosphoglycerate dehydrogenase, leads to epigenetic alterations that support oncogenic gene expression and tumor progression. Suppression of CS-ΔEx4 or pharmacologic inhibition of its activity reverts these metabolic and epigenetic changes, reducing cancer cell survival and metastatic potential. These findings establish a direct link between AS of a core metabolic enzyme and the emergence of cancer hallmarks, suggesting that targeting AS-derived variants like CS-ΔEx4 may represent a promising therapeutic strategy for colorectal cancer and potentially other malignancies in which such isoforms are expressed. See related article by Cheung et al., p. XX\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-25-3356\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-25-3356","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

代谢变化是癌症的主要标志,线粒体三羧酸(TCA)循环在这一过程中起着核心作用。TCA循环的重塑发生在癌细胞中,以维持生长、增殖和转移所需的合成代谢和能量需求的增加。选择性剪接(AS)越来越被认为是癌症代谢的关键调节因子,但其对TCA循环酶的具体影响尚不清楚。在这一期的《癌症研究》中,张及其同事描述了一种新的柠檬酸合酶(CS)剪接异构体,称为CS-ΔEx4,它在结直肠癌中高度表达。该CS-ΔEx4异构体与全长CS形成异位复合物,增强CS活性并促进恶性肿瘤的代谢重编程特征。CS-ΔEx4的过表达增加了线粒体呼吸,并驱动糖酵解碳向TCA中间体的流动,导致代谢物2-羟戊二酸水平升高。从机制上讲,2-羟基戊二酸的增加,由磷酸甘油脱氢酶活性的增加促进,导致支持致癌基因表达和肿瘤进展的表观遗传改变。抑制CS-ΔEx4或药理学抑制其活性可恢复这些代谢和表观遗传变化,降低癌细胞存活和转移潜力。这些发现建立了核心代谢酶的AS与癌症标志的出现之间的直接联系,表明靶向AS衍生变体如CS-ΔEx4可能代表了一种有希望的治疗策略,用于结直肠癌和潜在的其他恶性肿瘤,这些亚型在其中表达。参见b张等人的相关文章,第XX页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternatively Spliced Citrate Synthase Supports Colorectal Cancer
Metabolic changes are a major hallmark of cancer with the mitochondrial tricarboxylic acid (TCA) cycle playing a central role in this process. Remodeling of the TCA cycle occurs in cancer cells to sustain the increased anabolic and energetic demands required to grow, proliferate, and metastasize. Alternative splicing (AS) is increasingly recognized as a key regulator of cancer metabolism, yet its specific impact on TCA cycle enzymes remains unclear. In this issue of Cancer Research, Cheung and colleagues describe a novel splicing isoform of citrate synthase (CS), termed CS-ΔEx4, which is highly expressed in colorectal cancer. This CS-ΔEx4 isoform forms heterocomplexes with full-length CS, enhancing CS activity and promoting the metabolic reprogramming characteristic of malignancy. Overexpression of CS-ΔEx4 increases mitochondrial respiration and drives glycolytic carbon flux toward TCA intermediates, resulting in elevated levels of the metabolite 2-hydroxyglutarate. Mechanistically, this increase in 2-hydroxyglutarate, facilitated by increased activity of phosphoglycerate dehydrogenase, leads to epigenetic alterations that support oncogenic gene expression and tumor progression. Suppression of CS-ΔEx4 or pharmacologic inhibition of its activity reverts these metabolic and epigenetic changes, reducing cancer cell survival and metastatic potential. These findings establish a direct link between AS of a core metabolic enzyme and the emergence of cancer hallmarks, suggesting that targeting AS-derived variants like CS-ΔEx4 may represent a promising therapeutic strategy for colorectal cancer and potentially other malignancies in which such isoforms are expressed. See related article by Cheung et al., p. XX
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信