利用全幻灯片图像进行预后预测的自对比弱监督学习框架。

IF 7.7
PLOS digital health Pub Date : 2025-09-30 eCollection Date: 2025-09-01 DOI:10.1371/journal.pdig.0000972
Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J L H van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A M Janssen, Tahlita C M Zuiverloon, Kjersti Engan
{"title":"利用全幻灯片图像进行预后预测的自对比弱监督学习框架。","authors":"Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J L H van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A M Janssen, Tahlita C M Zuiverloon, Kjersti Engan","doi":"10.1371/journal.pdig.0000972","DOIUrl":null,"url":null,"abstract":"<p><p>We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction. Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak, and the model must anticipate future events that are not directly observable in the image. To address this challenge, we propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation, a contrastive learning module for feature extraction, and a nested multiple instance learning classification module. Our study explores the significance of various regions of interest within the histopathological slides and exploits diverse learning methods in real-world clinical scenarios. The pipeline is initially validated on artificially generated data and a simpler diagnostic task. Transitioning to prognostic prediction, tasks become more challenging. Employing bladder cancer as use case, our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively for a private data cohort. Altogether, this research serves as an initial investigation on the shortcomings of histopathological image analysis for treatment outcome prediction.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 9","pages":"e0000972"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide images.\",\"authors\":\"Saul Fuster, Farbod Khoraminia, Julio Silva-Rodríguez, Umay Kiraz, Geert J L H van Leenders, Trygve Eftestøl, Valery Naranjo, Emiel A M Janssen, Tahlita C M Zuiverloon, Kjersti Engan\",\"doi\":\"10.1371/journal.pdig.0000972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction. Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak, and the model must anticipate future events that are not directly observable in the image. To address this challenge, we propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation, a contrastive learning module for feature extraction, and a nested multiple instance learning classification module. Our study explores the significance of various regions of interest within the histopathological slides and exploits diverse learning methods in real-world clinical scenarios. The pipeline is initially validated on artificially generated data and a simpler diagnostic task. Transitioning to prognostic prediction, tasks become more challenging. Employing bladder cancer as use case, our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively for a private data cohort. Altogether, this research serves as an initial investigation on the shortcomings of histopathological image analysis for treatment outcome prediction.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 9\",\"pages\":\"e0000972\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12483252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一项开创性的研究,应用深度学习技术来分析组织病理学图像,以解决自动预后预测的重大挑战。预测预测提出了一个独特的挑战,因为地面真值标签本身就很弱,而且模型必须预测在图像中无法直接观察到的未来事件。为了解决这一挑战,我们提出了一个新的三部分框架,包括一个基于卷积网络的组织分割算法,用于兴趣区域的描绘,一个用于特征提取的对比学习模块,以及一个嵌套的多实例学习分类模块。我们的研究探讨了组织病理学幻灯片中不同兴趣区域的重要性,并在现实世界的临床场景中利用了不同的学习方法。管道最初在人工生成的数据和一个更简单的诊断任务上进行验证。过渡到预测预测,任务变得更具挑战性。以膀胱癌为例,我们的最佳模型对私人数据队列的复发和治疗结果预测的AUC分别为0.721和0.678。总之,本研究是对组织病理学图像分析用于治疗结果预测的缺点的初步调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-contrastive weakly supervised learning framework for prognostic prediction using whole slide images.

We present a pioneering investigation into the application of deep learning techniques to analyze histopathological images for addressing the substantial challenge of automated prognostic prediction. Prognostic prediction poses a unique challenge as the ground truth labels are inherently weak, and the model must anticipate future events that are not directly observable in the image. To address this challenge, we propose a novel three-part framework comprising of a convolutional network based tissue segmentation algorithm for region of interest delineation, a contrastive learning module for feature extraction, and a nested multiple instance learning classification module. Our study explores the significance of various regions of interest within the histopathological slides and exploits diverse learning methods in real-world clinical scenarios. The pipeline is initially validated on artificially generated data and a simpler diagnostic task. Transitioning to prognostic prediction, tasks become more challenging. Employing bladder cancer as use case, our best models yield an AUC of 0.721 and 0.678 for recurrence and treatment outcome prediction respectively for a private data cohort. Altogether, this research serves as an initial investigation on the shortcomings of histopathological image analysis for treatment outcome prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信