DeepEPI:基于cnn -transformer的模型,通过预测增强子-启动子相互作用来提取TF相互作用。

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-09-17 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf221
Seyedeh Fatemeh Tabatabaei, Saeedeh Akbari Roknabadi, Somayyeh Koohi
{"title":"DeepEPI:基于cnn -transformer的模型,通过预测增强子-启动子相互作用来提取TF相互作用。","authors":"Seyedeh Fatemeh Tabatabaei, Saeedeh Akbari Roknabadi, Somayyeh Koohi","doi":"10.1093/bioadv/vbaf221","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>We introduce DeepEPI, a deep learning framework for studying enhancer-promoter interactions (EPIs) directly from genomic sequences. By integrating convolutional neural networks (CNNs) with Transformer blocks, DeepEPI captures the complex regulatory interplay between enhancers and promoters, a key factor in gene expression and disease mechanisms. The model emphasizes interpretability and efficiency by employing embedding layers for OneHot encoding and multihead attention for detecting and analyzing transcription factor (TF) interactions. A DNA2Vec-based version of DeepEPI is also evaluated.</p><p><strong>Results: </strong>DeepEPI is assessed in two dimensions: comparison with existing models and analysis of encoding methods. Across six cell lines, DeepEPI consistently outperforms prior approaches. Compared to EPIVAN, it achieves a 2.4% gain in area under the precision-recall curve (AUPR) and maintains AUROC with DNA2Vec encoding, while with OneHot encoding it shows a 4% increase in AUPR and 1.9% in AUROC. Regarding encoding, DNA2Vec provides higher accuracy, but our OneHot-based embedding balances competitive performance with interpretability and reduced storage requirements. Beyond prediction, DeepEPI enhances biological insight by extracting meaningful TF-TF interactions from attention heads, effectively narrowing the search space for experimental validation. Validation analyses further support the biological relevance of these findings, underscoring DeepEPI's value for advancing EPI research.</p><p><strong>Availability and implementation: </strong>The source code of DeepEPI is available at: https://github.com/nazanintbtb/DeepEPI.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf221"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478696/pdf/","citationCount":"0","resultStr":"{\"title\":\"DeepEPI: CNN-transformer-based model for extracting TF interactions through predicting enhancer-promoter interactions.\",\"authors\":\"Seyedeh Fatemeh Tabatabaei, Saeedeh Akbari Roknabadi, Somayyeh Koohi\",\"doi\":\"10.1093/bioadv/vbaf221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>We introduce DeepEPI, a deep learning framework for studying enhancer-promoter interactions (EPIs) directly from genomic sequences. By integrating convolutional neural networks (CNNs) with Transformer blocks, DeepEPI captures the complex regulatory interplay between enhancers and promoters, a key factor in gene expression and disease mechanisms. The model emphasizes interpretability and efficiency by employing embedding layers for OneHot encoding and multihead attention for detecting and analyzing transcription factor (TF) interactions. A DNA2Vec-based version of DeepEPI is also evaluated.</p><p><strong>Results: </strong>DeepEPI is assessed in two dimensions: comparison with existing models and analysis of encoding methods. Across six cell lines, DeepEPI consistently outperforms prior approaches. Compared to EPIVAN, it achieves a 2.4% gain in area under the precision-recall curve (AUPR) and maintains AUROC with DNA2Vec encoding, while with OneHot encoding it shows a 4% increase in AUPR and 1.9% in AUROC. Regarding encoding, DNA2Vec provides higher accuracy, but our OneHot-based embedding balances competitive performance with interpretability and reduced storage requirements. Beyond prediction, DeepEPI enhances biological insight by extracting meaningful TF-TF interactions from attention heads, effectively narrowing the search space for experimental validation. Validation analyses further support the biological relevance of these findings, underscoring DeepEPI's value for advancing EPI research.</p><p><strong>Availability and implementation: </strong>The source code of DeepEPI is available at: https://github.com/nazanintbtb/DeepEPI.git.</p>\",\"PeriodicalId\":72368,\"journal\":{\"name\":\"Bioinformatics advances\",\"volume\":\"5 1\",\"pages\":\"vbaf221\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478696/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioadv/vbaf221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

动机:我们介绍了DeepEPI,这是一个深度学习框架,用于直接从基因组序列中研究增强子-启动子相互作用(EPIs)。通过将卷积神经网络(cnn)与Transformer块集成,DeepEPI捕获了增强子和启动子之间复杂的调控相互作用,这是基因表达和疾病机制的关键因素。该模型通过使用嵌入层进行OneHot编码和多头关注来检测和分析转录因子(TF)相互作用,从而强调可解释性和效率。还对基于dna2vec的deeppi版本进行了评估。结果:对DeepEPI进行了两个维度的评估:与现有模型的比较和编码方法的分析。在6个细胞系中,deeppi的表现始终优于之前的方法。与EPIVAN相比,DNA2Vec编码下的AUPR (precision-recall curve)面积增加了2.4%,保持了AUROC,而OneHot编码下的AUPR增加了4%,AUROC增加了1.9%。在编码方面,DNA2Vec提供了更高的准确性,但我们基于onehot的嵌入平衡了竞争性性能与可解释性和降低存储需求。除了预测之外,DeepEPI还通过从注意力头部提取有意义的TF-TF相互作用来增强生物学洞察力,有效地缩小了实验验证的搜索空间。验证分析进一步支持了这些发现的生物学相关性,强调了DeepEPI对推进EPI研究的价值。可用性和实现:DeepEPI的源代码可在:https://github.com/nazanintbtb/DeepEPI.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepEPI: CNN-transformer-based model for extracting TF interactions through predicting enhancer-promoter interactions.

Motivation: We introduce DeepEPI, a deep learning framework for studying enhancer-promoter interactions (EPIs) directly from genomic sequences. By integrating convolutional neural networks (CNNs) with Transformer blocks, DeepEPI captures the complex regulatory interplay between enhancers and promoters, a key factor in gene expression and disease mechanisms. The model emphasizes interpretability and efficiency by employing embedding layers for OneHot encoding and multihead attention for detecting and analyzing transcription factor (TF) interactions. A DNA2Vec-based version of DeepEPI is also evaluated.

Results: DeepEPI is assessed in two dimensions: comparison with existing models and analysis of encoding methods. Across six cell lines, DeepEPI consistently outperforms prior approaches. Compared to EPIVAN, it achieves a 2.4% gain in area under the precision-recall curve (AUPR) and maintains AUROC with DNA2Vec encoding, while with OneHot encoding it shows a 4% increase in AUPR and 1.9% in AUROC. Regarding encoding, DNA2Vec provides higher accuracy, but our OneHot-based embedding balances competitive performance with interpretability and reduced storage requirements. Beyond prediction, DeepEPI enhances biological insight by extracting meaningful TF-TF interactions from attention heads, effectively narrowing the search space for experimental validation. Validation analyses further support the biological relevance of these findings, underscoring DeepEPI's value for advancing EPI research.

Availability and implementation: The source code of DeepEPI is available at: https://github.com/nazanintbtb/DeepEPI.git.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信