{"title":"carvacrol对心肌缺血再灌注损伤成肌细胞模型的保护作用。","authors":"Ali M Albarrati, Rakan I Nazer","doi":"10.1080/00498254.2025.2567470","DOIUrl":null,"url":null,"abstract":"<p><p>Phytopharmacology has become a key approach for developing new therapeutic strategies by utilizing the diverse bioactive properties of plant-derived compounds to treat complex diseases, including cardiovascular disorders.Myocardial ischemia-reperfusion (I/R) injury presents a major challenge in the management of acute myocardial infarction by worsening myocardial damage through oxidative stress, apoptosis, and cellular senescence.Carvacrol, a monoterpenoid phenol present in plants such as <i>Origanum vulgare</i>, possesses potent antioxidant and anti-inflammatory properties.This study investigates carvacrol's cardioprotective effects in an H9C2 cardiac myoblast model of I/R injury.Cardiac myoblast cells were exposed to an ischemic buffer to simulate I/R conditions, with carvacrol administered at a sub-cytotoxic dose of 12.5 µg/ml prior to exposure. Carvacrol significantly enhanced cell viability by 77.37% restoration, reduced lactate dehydrogenase (LDH) release (from 330.5 ± 25.3 to 160.8 ± 15.7 U/ml, p < 0.01), suppressed reactive oxygen species (ROS) production, inhibited caspase-3 and -8 activities, and mitigated cellular senescence as evidenced by reduced β-galactosidase staining. Additionally, carvacrol restored the expression of the myogenin gene, which was downregulated by ischemic injury.These findings highlight carvacrol's antioxidant, anti-apoptotic, anti-senescence, and gene-regulatory properties, positioning it as a promising therapeutic candidate for mitigating myocardial I/R injury.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"1-12"},"PeriodicalIF":1.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective effect of carvacrol in a cardiac myoblast cell model of myocardial ischemia-reperfusion injury.\",\"authors\":\"Ali M Albarrati, Rakan I Nazer\",\"doi\":\"10.1080/00498254.2025.2567470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phytopharmacology has become a key approach for developing new therapeutic strategies by utilizing the diverse bioactive properties of plant-derived compounds to treat complex diseases, including cardiovascular disorders.Myocardial ischemia-reperfusion (I/R) injury presents a major challenge in the management of acute myocardial infarction by worsening myocardial damage through oxidative stress, apoptosis, and cellular senescence.Carvacrol, a monoterpenoid phenol present in plants such as <i>Origanum vulgare</i>, possesses potent antioxidant and anti-inflammatory properties.This study investigates carvacrol's cardioprotective effects in an H9C2 cardiac myoblast model of I/R injury.Cardiac myoblast cells were exposed to an ischemic buffer to simulate I/R conditions, with carvacrol administered at a sub-cytotoxic dose of 12.5 µg/ml prior to exposure. Carvacrol significantly enhanced cell viability by 77.37% restoration, reduced lactate dehydrogenase (LDH) release (from 330.5 ± 25.3 to 160.8 ± 15.7 U/ml, p < 0.01), suppressed reactive oxygen species (ROS) production, inhibited caspase-3 and -8 activities, and mitigated cellular senescence as evidenced by reduced β-galactosidase staining. Additionally, carvacrol restored the expression of the myogenin gene, which was downregulated by ischemic injury.These findings highlight carvacrol's antioxidant, anti-apoptotic, anti-senescence, and gene-regulatory properties, positioning it as a promising therapeutic candidate for mitigating myocardial I/R injury.</p>\",\"PeriodicalId\":23812,\"journal\":{\"name\":\"Xenobiotica\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenobiotica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/00498254.2025.2567470\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2025.2567470","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
植物药理学已成为开发新的治疗策略的关键途径,利用植物源性化合物的多种生物活性特性来治疗包括心血管疾病在内的复杂疾病。心肌缺血再灌注(I/R)损伤通过氧化应激、细胞凋亡和细胞衰老加剧心肌损伤,是急性心肌梗死治疗的主要挑战。香芹酚是一种单萜类酚,存在于植物中,如Origanum vulgare,具有有效的抗氧化和抗炎特性。本研究探讨了carvacrol在I/R损伤H9C2心肌成肌细胞模型中的心脏保护作用。心肌母细胞暴露于缺血缓冲液中以模拟I/R条件,暴露前给予卡伐罗12.5µg/ml的亚细胞毒性剂量。Carvacrol显著提高细胞活力77.37%,降低乳酸脱氢酶(LDH)释放(从330.5±25.3降至160.8±15.7 U/ml, p
Protective effect of carvacrol in a cardiac myoblast cell model of myocardial ischemia-reperfusion injury.
Phytopharmacology has become a key approach for developing new therapeutic strategies by utilizing the diverse bioactive properties of plant-derived compounds to treat complex diseases, including cardiovascular disorders.Myocardial ischemia-reperfusion (I/R) injury presents a major challenge in the management of acute myocardial infarction by worsening myocardial damage through oxidative stress, apoptosis, and cellular senescence.Carvacrol, a monoterpenoid phenol present in plants such as Origanum vulgare, possesses potent antioxidant and anti-inflammatory properties.This study investigates carvacrol's cardioprotective effects in an H9C2 cardiac myoblast model of I/R injury.Cardiac myoblast cells were exposed to an ischemic buffer to simulate I/R conditions, with carvacrol administered at a sub-cytotoxic dose of 12.5 µg/ml prior to exposure. Carvacrol significantly enhanced cell viability by 77.37% restoration, reduced lactate dehydrogenase (LDH) release (from 330.5 ± 25.3 to 160.8 ± 15.7 U/ml, p < 0.01), suppressed reactive oxygen species (ROS) production, inhibited caspase-3 and -8 activities, and mitigated cellular senescence as evidenced by reduced β-galactosidase staining. Additionally, carvacrol restored the expression of the myogenin gene, which was downregulated by ischemic injury.These findings highlight carvacrol's antioxidant, anti-apoptotic, anti-senescence, and gene-regulatory properties, positioning it as a promising therapeutic candidate for mitigating myocardial I/R injury.
期刊介绍:
Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology