{"title":"结合非靶向和靶向代谢组学鉴定腺样体肥大的诊断性生物标志物。","authors":"Yao Duan, Nian Li, Jingye Gu, Liting Ma, Si Wu, Yuhan Xie, Jianing Liu, Qiulu Zhao, Hao Yue, Zifeng Pi, Yinan Guo","doi":"10.1088/1752-7163/ae0dac","DOIUrl":null,"url":null,"abstract":"<p><p>Adenoid hypertrophy (AH) is a common condition among pediatric and adolescent populations. The clinical diagnosis primarily relies on rhinoscopy, with a notable absence of noninvasive early diagnostic methods. This study sought to identify potential biomarkers to facilitate the early diagnosis of AH. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze and compare urine samples from 40 patients with AH and 30 healthy controls. To validate and enhance the findings from untargeted metabolomics, targeted metabolomics was conducted using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), aiming to elucidate the relationship between AH and metabolic pathways. The untargeted metabolomics analysis, utilizing multivariate techniques, identified significant differences in the levels of 20 endogenous metabolites in urine samples between the AH and healthy groups. Further investigation of metabolic pathways indicated that sphingolipid and riboflavin metabolism are implicated in the pathogenesis of AH. Riboflavin and phytosphingosine were identified as potential biomarkers using targeted metabolomics. In this study, a comprehensive approach involving both untargeted and targeted metabolomics was employed to investigate diagnostic biomarkers of AH. The abnormal expression levels of riboflavin and phytosphingosine may be related to inflammation, oxidative damage, and immunomodulatory dysfunction in the pathogenesis of AH. The results showed that the identified biomarkers may serve as a novel tool for early diagnosis and tracking of disease progression.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining untargeted and targeted metabolomics to identify diagnostic biomarkers of adenoid hypertrophy.\",\"authors\":\"Yao Duan, Nian Li, Jingye Gu, Liting Ma, Si Wu, Yuhan Xie, Jianing Liu, Qiulu Zhao, Hao Yue, Zifeng Pi, Yinan Guo\",\"doi\":\"10.1088/1752-7163/ae0dac\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adenoid hypertrophy (AH) is a common condition among pediatric and adolescent populations. The clinical diagnosis primarily relies on rhinoscopy, with a notable absence of noninvasive early diagnostic methods. This study sought to identify potential biomarkers to facilitate the early diagnosis of AH. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze and compare urine samples from 40 patients with AH and 30 healthy controls. To validate and enhance the findings from untargeted metabolomics, targeted metabolomics was conducted using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), aiming to elucidate the relationship between AH and metabolic pathways. The untargeted metabolomics analysis, utilizing multivariate techniques, identified significant differences in the levels of 20 endogenous metabolites in urine samples between the AH and healthy groups. Further investigation of metabolic pathways indicated that sphingolipid and riboflavin metabolism are implicated in the pathogenesis of AH. Riboflavin and phytosphingosine were identified as potential biomarkers using targeted metabolomics. In this study, a comprehensive approach involving both untargeted and targeted metabolomics was employed to investigate diagnostic biomarkers of AH. The abnormal expression levels of riboflavin and phytosphingosine may be related to inflammation, oxidative damage, and immunomodulatory dysfunction in the pathogenesis of AH. The results showed that the identified biomarkers may serve as a novel tool for early diagnosis and tracking of disease progression.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ae0dac\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ae0dac","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Combining untargeted and targeted metabolomics to identify diagnostic biomarkers of adenoid hypertrophy.
Adenoid hypertrophy (AH) is a common condition among pediatric and adolescent populations. The clinical diagnosis primarily relies on rhinoscopy, with a notable absence of noninvasive early diagnostic methods. This study sought to identify potential biomarkers to facilitate the early diagnosis of AH. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze and compare urine samples from 40 patients with AH and 30 healthy controls. To validate and enhance the findings from untargeted metabolomics, targeted metabolomics was conducted using ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS), aiming to elucidate the relationship between AH and metabolic pathways. The untargeted metabolomics analysis, utilizing multivariate techniques, identified significant differences in the levels of 20 endogenous metabolites in urine samples between the AH and healthy groups. Further investigation of metabolic pathways indicated that sphingolipid and riboflavin metabolism are implicated in the pathogenesis of AH. Riboflavin and phytosphingosine were identified as potential biomarkers using targeted metabolomics. In this study, a comprehensive approach involving both untargeted and targeted metabolomics was employed to investigate diagnostic biomarkers of AH. The abnormal expression levels of riboflavin and phytosphingosine may be related to inflammation, oxidative damage, and immunomodulatory dysfunction in the pathogenesis of AH. The results showed that the identified biomarkers may serve as a novel tool for early diagnosis and tracking of disease progression.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.