Mingyu Liu, Rongxin Lu, Bo Wang, Jun Fan, Yuheng Wang, Jiashan Zhu, Jinhua Luo
{"title":"机器学习结合ct放射组学预测食管鳞状细胞癌的预后。","authors":"Mingyu Liu, Rongxin Lu, Bo Wang, Jun Fan, Yuheng Wang, Jiashan Zhu, Jinhua Luo","doi":"10.1186/s13244-025-02049-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This retrospective study aims to develop a machine learning model integrating preoperative CT radiomics and clinicopathological data to predict 3-year recurrence and recurrence patterns in postoperative oesophageal squamous cell carcinoma.</p><p><strong>Materials and methods: </strong>Tumour regions were segmented using 3D-Slicer, and radiomic features were extracted via Python. LASSO regression selected prognostic features for model integration. Clinicopathological data include tumour length, lymph node positivity, differentiation grade, and neurovascular infiltration. Ultimately, a machine learning model was established by combining the screened imaging feature data and clinicopathological data and validating model performance. A nomogram was constructed for survival prediction, and risk stratification was carried out through the prediction results of the machine learning model and the nomogram. Survival analysis was performed for stage-based patient subgroups across risk stratifications to identify adjuvant therapy-benefiting cohorts.</p><p><strong>Results: </strong>Patients were randomly divided into a 7:3 ratio of 368 patients in the training cohorts and 158 patients in the validation cohorts. The LASSO regression screens out 6 recurrence prediction and 9 recurrence pattern prediction features, respectively. Among 526 patients (mean age 63; 427 males), the model achieved high accuracy in predicting recurrence (training cohort AUC: 0.826 [logistic regression]/0.820 [SVM]; validation cohort: 0.830/0.825) and recurrence patterns (training:0.801/0.799; validation:0.806/0.798). Risk stratification based on a machine learning model and nomogram predictions revealed that adjuvant therapy significantly improved disease-free survival in stages II-III patients with predicted recurrence and low survival (HR 0.372, 95% CI: 0.206-0.669; p < 0.001).</p><p><strong>Conclusion: </strong>Machine learning models exhibit excellent performance in predicting recurrence after surgery for squamous oesophageal cancer.</p><p><strong>Critical relevance statement: </strong>Radiomic features of contrast-enhanced CT imaging can predict the prognosis of patients with oesophageal squamous cell carcinoma, which in turn can help clinicians stratify risk and screen out patient populations that could benefit from adjuvant therapy, thereby aiding medical decision-making.</p><p><strong>Key points: </strong>There is a lack of prognostic models for oesophageal squamous cell carcinoma in current research. The prognostic prediction model that we have developed has high accuracy by combining radiomics features and clinicopathologic data. This model aids in risk stratification of patients and aids clinical decision-making through predictive outcomes.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"211"},"PeriodicalIF":4.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning combined with CT-based radiomics predicts the prognosis of oesophageal squamous cell carcinoma.\",\"authors\":\"Mingyu Liu, Rongxin Lu, Bo Wang, Jun Fan, Yuheng Wang, Jiashan Zhu, Jinhua Luo\",\"doi\":\"10.1186/s13244-025-02049-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This retrospective study aims to develop a machine learning model integrating preoperative CT radiomics and clinicopathological data to predict 3-year recurrence and recurrence patterns in postoperative oesophageal squamous cell carcinoma.</p><p><strong>Materials and methods: </strong>Tumour regions were segmented using 3D-Slicer, and radiomic features were extracted via Python. LASSO regression selected prognostic features for model integration. Clinicopathological data include tumour length, lymph node positivity, differentiation grade, and neurovascular infiltration. Ultimately, a machine learning model was established by combining the screened imaging feature data and clinicopathological data and validating model performance. A nomogram was constructed for survival prediction, and risk stratification was carried out through the prediction results of the machine learning model and the nomogram. Survival analysis was performed for stage-based patient subgroups across risk stratifications to identify adjuvant therapy-benefiting cohorts.</p><p><strong>Results: </strong>Patients were randomly divided into a 7:3 ratio of 368 patients in the training cohorts and 158 patients in the validation cohorts. The LASSO regression screens out 6 recurrence prediction and 9 recurrence pattern prediction features, respectively. Among 526 patients (mean age 63; 427 males), the model achieved high accuracy in predicting recurrence (training cohort AUC: 0.826 [logistic regression]/0.820 [SVM]; validation cohort: 0.830/0.825) and recurrence patterns (training:0.801/0.799; validation:0.806/0.798). Risk stratification based on a machine learning model and nomogram predictions revealed that adjuvant therapy significantly improved disease-free survival in stages II-III patients with predicted recurrence and low survival (HR 0.372, 95% CI: 0.206-0.669; p < 0.001).</p><p><strong>Conclusion: </strong>Machine learning models exhibit excellent performance in predicting recurrence after surgery for squamous oesophageal cancer.</p><p><strong>Critical relevance statement: </strong>Radiomic features of contrast-enhanced CT imaging can predict the prognosis of patients with oesophageal squamous cell carcinoma, which in turn can help clinicians stratify risk and screen out patient populations that could benefit from adjuvant therapy, thereby aiding medical decision-making.</p><p><strong>Key points: </strong>There is a lack of prognostic models for oesophageal squamous cell carcinoma in current research. The prognostic prediction model that we have developed has high accuracy by combining radiomics features and clinicopathologic data. This model aids in risk stratification of patients and aids clinical decision-making through predictive outcomes.</p>\",\"PeriodicalId\":13639,\"journal\":{\"name\":\"Insights into Imaging\",\"volume\":\"16 1\",\"pages\":\"211\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights into Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13244-025-02049-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-02049-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Machine learning combined with CT-based radiomics predicts the prognosis of oesophageal squamous cell carcinoma.
Objectives: This retrospective study aims to develop a machine learning model integrating preoperative CT radiomics and clinicopathological data to predict 3-year recurrence and recurrence patterns in postoperative oesophageal squamous cell carcinoma.
Materials and methods: Tumour regions were segmented using 3D-Slicer, and radiomic features were extracted via Python. LASSO regression selected prognostic features for model integration. Clinicopathological data include tumour length, lymph node positivity, differentiation grade, and neurovascular infiltration. Ultimately, a machine learning model was established by combining the screened imaging feature data and clinicopathological data and validating model performance. A nomogram was constructed for survival prediction, and risk stratification was carried out through the prediction results of the machine learning model and the nomogram. Survival analysis was performed for stage-based patient subgroups across risk stratifications to identify adjuvant therapy-benefiting cohorts.
Results: Patients were randomly divided into a 7:3 ratio of 368 patients in the training cohorts and 158 patients in the validation cohorts. The LASSO regression screens out 6 recurrence prediction and 9 recurrence pattern prediction features, respectively. Among 526 patients (mean age 63; 427 males), the model achieved high accuracy in predicting recurrence (training cohort AUC: 0.826 [logistic regression]/0.820 [SVM]; validation cohort: 0.830/0.825) and recurrence patterns (training:0.801/0.799; validation:0.806/0.798). Risk stratification based on a machine learning model and nomogram predictions revealed that adjuvant therapy significantly improved disease-free survival in stages II-III patients with predicted recurrence and low survival (HR 0.372, 95% CI: 0.206-0.669; p < 0.001).
Conclusion: Machine learning models exhibit excellent performance in predicting recurrence after surgery for squamous oesophageal cancer.
Critical relevance statement: Radiomic features of contrast-enhanced CT imaging can predict the prognosis of patients with oesophageal squamous cell carcinoma, which in turn can help clinicians stratify risk and screen out patient populations that could benefit from adjuvant therapy, thereby aiding medical decision-making.
Key points: There is a lack of prognostic models for oesophageal squamous cell carcinoma in current research. The prognostic prediction model that we have developed has high accuracy by combining radiomics features and clinicopathologic data. This model aids in risk stratification of patients and aids clinical decision-making through predictive outcomes.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.