MGMA-PPIS:基于多视图图嵌入和多尺度注意力融合的蛋白相互作用位点预测。

IF 11.8 2区 生物学 Q1 MULTIDISCIPLINARY SCIENCES
Yong Han, Shao-Wu Zhang, Qing-Qing Zhang, Ming-Hui Shi
{"title":"MGMA-PPIS:基于多视图图嵌入和多尺度注意力融合的蛋白相互作用位点预测。","authors":"Yong Han, Shao-Wu Zhang, Qing-Qing Zhang, Ming-Hui Shi","doi":"10.1093/gigascience/giaf114","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein-protein interactions (PPIs) play a crucial role in numerous biological processes. Accurate identification of protein-protein interaction sites is critical for a comprehensive understanding of protein functions and pathological mechanisms. However, conventional experimental approaches for detecting PPIs are often time-consuming and labor-intensive, thereby motivating the development of efficient computational methods to identify PPI sites.</p><p><strong>Results: </strong>In this work, we propose a novel graph neural network-based method (called MGMA-PPIS) to predict PPI sites by adopting multiview graph embedding and multiscale attention fusion. MGMA-PPIS integrates global node features extracted by an equivariant graph neural network and multiscale local node features extracted by an edge graph attention network across different neighborhood scales, thereby constructing a multiview graph feature representation. Then, a multiscale attention network is employed to perform deep feature fusion across multiple scales for achieving high-precision prediction of PPI sites.</p><p><strong>Conclusions: </strong>Experimental results on benchmark datasets show that our MGMA-PPIS outperforms other state-of-the-art methods, and it can effectively predict PPI sites.</p>","PeriodicalId":12581,"journal":{"name":"GigaScience","volume":"14 ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486388/pdf/","citationCount":"0","resultStr":"{\"title\":\"MGMA-PPIS: Predicting the protein-protein interaction site with multiview graph embedding and multiscale attention fusion.\",\"authors\":\"Yong Han, Shao-Wu Zhang, Qing-Qing Zhang, Ming-Hui Shi\",\"doi\":\"10.1093/gigascience/giaf114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein-protein interactions (PPIs) play a crucial role in numerous biological processes. Accurate identification of protein-protein interaction sites is critical for a comprehensive understanding of protein functions and pathological mechanisms. However, conventional experimental approaches for detecting PPIs are often time-consuming and labor-intensive, thereby motivating the development of efficient computational methods to identify PPI sites.</p><p><strong>Results: </strong>In this work, we propose a novel graph neural network-based method (called MGMA-PPIS) to predict PPI sites by adopting multiview graph embedding and multiscale attention fusion. MGMA-PPIS integrates global node features extracted by an equivariant graph neural network and multiscale local node features extracted by an edge graph attention network across different neighborhood scales, thereby constructing a multiview graph feature representation. Then, a multiscale attention network is employed to perform deep feature fusion across multiple scales for achieving high-precision prediction of PPI sites.</p><p><strong>Conclusions: </strong>Experimental results on benchmark datasets show that our MGMA-PPIS outperforms other state-of-the-art methods, and it can effectively predict PPI sites.</p>\",\"PeriodicalId\":12581,\"journal\":{\"name\":\"GigaScience\",\"volume\":\"14 \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486388/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaScience\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gigascience/giaf114\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaScience","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gigascience/giaf114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:蛋白质-蛋白质相互作用(PPIs)在许多生物过程中起着至关重要的作用。准确鉴定蛋白质-蛋白质相互作用位点对于全面了解蛋白质功能和病理机制至关重要。然而,传统的检测PPI的实验方法通常是耗时和劳动密集型的,因此激发了有效的计算方法来识别PPI位点的发展。结果:在本研究中,我们提出了一种新的基于图神经网络的方法(称为MGMA-PPIS),该方法采用多视图图嵌入和多尺度注意力融合来预测PPI位点。MGMA-PPIS集成了由等变图神经网络提取的全局节点特征和由不同邻域尺度的边缘图注意网络提取的多尺度局部节点特征,从而构建了多视图图特征表示。然后,利用多尺度关注网络进行多尺度深度特征融合,实现PPI位点的高精度预测;结论:在基准数据集上的实验结果表明,我们的MGMA-PPIS优于其他最先进的方法,可以有效地预测PPI位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MGMA-PPIS: Predicting the protein-protein interaction site with multiview graph embedding and multiscale attention fusion.

Background: Protein-protein interactions (PPIs) play a crucial role in numerous biological processes. Accurate identification of protein-protein interaction sites is critical for a comprehensive understanding of protein functions and pathological mechanisms. However, conventional experimental approaches for detecting PPIs are often time-consuming and labor-intensive, thereby motivating the development of efficient computational methods to identify PPI sites.

Results: In this work, we propose a novel graph neural network-based method (called MGMA-PPIS) to predict PPI sites by adopting multiview graph embedding and multiscale attention fusion. MGMA-PPIS integrates global node features extracted by an equivariant graph neural network and multiscale local node features extracted by an edge graph attention network across different neighborhood scales, thereby constructing a multiview graph feature representation. Then, a multiscale attention network is employed to perform deep feature fusion across multiple scales for achieving high-precision prediction of PPI sites.

Conclusions: Experimental results on benchmark datasets show that our MGMA-PPIS outperforms other state-of-the-art methods, and it can effectively predict PPI sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GigaScience
GigaScience MULTIDISCIPLINARY SCIENCES-
CiteScore
15.50
自引率
1.10%
发文量
119
审稿时长
1 weeks
期刊介绍: GigaScience seeks to transform data dissemination and utilization in the life and biomedical sciences. As an online open-access open-data journal, it specializes in publishing "big-data" studies encompassing various fields. Its scope includes not only "omic" type data and the fields of high-throughput biology currently serviced by large public repositories, but also the growing range of more difficult-to-access data, such as imaging, neuroscience, ecology, cohort data, systems biology and other new types of large-scale shareable data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信