基准测试原始数据集和协作进化处理数据,用于无标记运动捕获分析。

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2025-09-12 eCollection Date: 2025-10-01 DOI:10.1016/j.dib.2025.112044
Antoine Muller, Alexandre Naaïm, Raphaël Dumas, Thomas Robert
{"title":"基准测试原始数据集和协作进化处理数据,用于无标记运动捕获分析。","authors":"Antoine Muller, Alexandre Naaïm, Raphaël Dumas, Thomas Robert","doi":"10.1016/j.dib.2025.112044","DOIUrl":null,"url":null,"abstract":"<p><p>We present a dataset designed for benchmarking markerless motion capture methods (from videos to joint kinematics). The dataset includes both raw and processed data. Two participants performed five tasks - walking, sit-to-stand, manual material handling, handstand hold or Y-pose (depending on the participant), and a jointly performed dance sequence. Movements were captured simultaneously recorded using 10 optoelectronic cameras (Qualisys Miqus M3, 120 Hz) and 9 video cameras (Qualisys Miqus Video, 60 Hz, 1920×1088 pixels). The raw dataset provides 3D marker trajectories and video recordings. The processed dataset includes joint kinematics obtained from both marker-based motion capture and 7 different markerless methods, contributed by multiple research teams as part of a challenge organized during a national biomechanics seminar. Additionally, the open-access GitHub repository containing processed data enables researchers to contribute new markerless methods estimated and expand the dataset collaboratively. This resource aims to facilitate benchmarking and support the development of robust markerless motion analysis methods.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"62 ","pages":"112044"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477944/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking raw datasets and collaboratively-evolving processed data for markerless motion capture analysis.\",\"authors\":\"Antoine Muller, Alexandre Naaïm, Raphaël Dumas, Thomas Robert\",\"doi\":\"10.1016/j.dib.2025.112044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a dataset designed for benchmarking markerless motion capture methods (from videos to joint kinematics). The dataset includes both raw and processed data. Two participants performed five tasks - walking, sit-to-stand, manual material handling, handstand hold or Y-pose (depending on the participant), and a jointly performed dance sequence. Movements were captured simultaneously recorded using 10 optoelectronic cameras (Qualisys Miqus M3, 120 Hz) and 9 video cameras (Qualisys Miqus Video, 60 Hz, 1920×1088 pixels). The raw dataset provides 3D marker trajectories and video recordings. The processed dataset includes joint kinematics obtained from both marker-based motion capture and 7 different markerless methods, contributed by multiple research teams as part of a challenge organized during a national biomechanics seminar. Additionally, the open-access GitHub repository containing processed data enables researchers to contribute new markerless methods estimated and expand the dataset collaboratively. This resource aims to facilitate benchmarking and support the development of robust markerless motion analysis methods.</p>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"62 \",\"pages\":\"112044\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12477944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dib.2025.112044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2025.112044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个设计用于基准测试无标记运动捕捉方法的数据集(从视频到关节运动学)。数据集包括原始数据和处理过的数据。两名参与者完成了五项任务——走路、坐立、手动搬运材料、倒立或y姿势(取决于参与者),以及共同表演的舞蹈序列。使用10台光电摄像机(Qualisys Miqus M3, 120 Hz)和9台摄像机(Qualisys Miqus video, 60 Hz, 1920×1088像素)同时捕获运动记录。原始数据集提供了3D标记轨迹和视频记录。处理后的数据集包括从基于标记的运动捕获和7种不同的无标记方法获得的关节运动学,由多个研究团队贡献,作为国家生物力学研讨会期间组织的挑战的一部分。此外,包含处理数据的开放访问GitHub存储库使研究人员能够贡献新的无标记方法来估计和协作扩展数据集。该资源旨在促进基准测试和支持鲁棒无标记运动分析方法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmarking raw datasets and collaboratively-evolving processed data for markerless motion capture analysis.

Benchmarking raw datasets and collaboratively-evolving processed data for markerless motion capture analysis.

Benchmarking raw datasets and collaboratively-evolving processed data for markerless motion capture analysis.

Benchmarking raw datasets and collaboratively-evolving processed data for markerless motion capture analysis.

We present a dataset designed for benchmarking markerless motion capture methods (from videos to joint kinematics). The dataset includes both raw and processed data. Two participants performed five tasks - walking, sit-to-stand, manual material handling, handstand hold or Y-pose (depending on the participant), and a jointly performed dance sequence. Movements were captured simultaneously recorded using 10 optoelectronic cameras (Qualisys Miqus M3, 120 Hz) and 9 video cameras (Qualisys Miqus Video, 60 Hz, 1920×1088 pixels). The raw dataset provides 3D marker trajectories and video recordings. The processed dataset includes joint kinematics obtained from both marker-based motion capture and 7 different markerless methods, contributed by multiple research teams as part of a challenge organized during a national biomechanics seminar. Additionally, the open-access GitHub repository containing processed data enables researchers to contribute new markerless methods estimated and expand the dataset collaboratively. This resource aims to facilitate benchmarking and support the development of robust markerless motion analysis methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信