dynamalird:基于IEEE 738-2012标准,利用气象数据和电网参数的架空输电线路动态线路额定值数据集。

IF 1.4 Q3 MULTIDISCIPLINARY SCIENCES
Data in Brief Pub Date : 2025-09-15 eCollection Date: 2025-10-01 DOI:10.1016/j.dib.2025.112065
Najmul Alam, M A Rahman, Md Rashidul Islam
{"title":"dynamalird:基于IEEE 738-2012标准,利用气象数据和电网参数的架空输电线路动态线路额定值数据集。","authors":"Najmul Alam, M A Rahman, Md Rashidul Islam","doi":"10.1016/j.dib.2025.112065","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents DynaLiRD, a comprehensive dataset for dynamic line rating (DLR) of the Trang-Thap Cham 220 kV overhead transmission line. The DLR values are computed using the IEEE 738-2012 standard based on historical meteorological data such as ambient temperature, wind speed and direction, and global horizontal irradiance as well as detailed line parameters including conductor type, diameter, length, and elevation. To enhance the dataset's applicability in cybersecurity and machine learning research, adversarially perturbed data is included using the fast gradient sign method (FGSM) and basic iterative method (BIM) under varying perturbation intensities. This dataset is essential for DLR estimation, dynamic thermal rating (DTR) forecasting, renewable energy integration into the grid, machine learning (ML) applications, infrastructure planning, energy policy development, and cybersecurity vulnerability investigation. Its structured format and inclusion of both clean and adversarial data make it valuable for evaluating the resilience of data-driven energy systems.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"62 ","pages":"112065"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478051/pdf/","citationCount":"0","resultStr":"{\"title\":\"DynaLiRD: A dataset for dynamic line rating of overhead transmission lines, utilizing meteorological data and grid parameters based on the IEEE 738-2012 standard.\",\"authors\":\"Najmul Alam, M A Rahman, Md Rashidul Islam\",\"doi\":\"10.1016/j.dib.2025.112065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents DynaLiRD, a comprehensive dataset for dynamic line rating (DLR) of the Trang-Thap Cham 220 kV overhead transmission line. The DLR values are computed using the IEEE 738-2012 standard based on historical meteorological data such as ambient temperature, wind speed and direction, and global horizontal irradiance as well as detailed line parameters including conductor type, diameter, length, and elevation. To enhance the dataset's applicability in cybersecurity and machine learning research, adversarially perturbed data is included using the fast gradient sign method (FGSM) and basic iterative method (BIM) under varying perturbation intensities. This dataset is essential for DLR estimation, dynamic thermal rating (DTR) forecasting, renewable energy integration into the grid, machine learning (ML) applications, infrastructure planning, energy policy development, and cybersecurity vulnerability investigation. Its structured format and inclusion of both clean and adversarial data make it valuable for evaluating the resilience of data-driven energy systems.</p>\",\"PeriodicalId\":10973,\"journal\":{\"name\":\"Data in Brief\",\"volume\":\"62 \",\"pages\":\"112065\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12478051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data in Brief\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.dib.2025.112065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2025.112065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/10/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一套全面的220千伏架空输电线路动态线路额定值(DLR)数据集。DLR值是根据IEEE 738-2012标准计算的,该标准基于历史气象数据,如环境温度、风速和风向、全球水平辐照度以及详细的线路参数,包括导线类型、直径、长度和高程。为了增强数据集在网络安全和机器学习研究中的适用性,在不同的扰动强度下,使用快速梯度符号法(FGSM)和基本迭代法(BIM)包括对抗扰动数据。该数据集对于DLR估计、动态热评级(DTR)预测、可再生能源整合到电网、机器学习(ML)应用、基础设施规划、能源政策制定和网络安全漏洞调查至关重要。它的结构化格式和包含清洁和对抗数据使其对评估数据驱动的能源系统的弹性有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DynaLiRD: A dataset for dynamic line rating of overhead transmission lines, utilizing meteorological data and grid parameters based on the IEEE 738-2012 standard.

DynaLiRD: A dataset for dynamic line rating of overhead transmission lines, utilizing meteorological data and grid parameters based on the IEEE 738-2012 standard.

DynaLiRD: A dataset for dynamic line rating of overhead transmission lines, utilizing meteorological data and grid parameters based on the IEEE 738-2012 standard.

DynaLiRD: A dataset for dynamic line rating of overhead transmission lines, utilizing meteorological data and grid parameters based on the IEEE 738-2012 standard.

This article presents DynaLiRD, a comprehensive dataset for dynamic line rating (DLR) of the Trang-Thap Cham 220 kV overhead transmission line. The DLR values are computed using the IEEE 738-2012 standard based on historical meteorological data such as ambient temperature, wind speed and direction, and global horizontal irradiance as well as detailed line parameters including conductor type, diameter, length, and elevation. To enhance the dataset's applicability in cybersecurity and machine learning research, adversarially perturbed data is included using the fast gradient sign method (FGSM) and basic iterative method (BIM) under varying perturbation intensities. This dataset is essential for DLR estimation, dynamic thermal rating (DTR) forecasting, renewable energy integration into the grid, machine learning (ML) applications, infrastructure planning, energy policy development, and cybersecurity vulnerability investigation. Its structured format and inclusion of both clean and adversarial data make it valuable for evaluating the resilience of data-driven energy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信