Abir K Panda, Kannan Natarajan, Surajit Sinha, Jiansheng Jiang, Sruthi Chempati, Lisa F Boyd, Priyanka P Desai, Maja Buszko, Yong-Hee Kim, Soha Kazmi, Bryan Fisk, Martha E Teke, Carolina M Larrain, Kirsten Remmert, Andrew M Blakely, Iyadh Douagi, Jonathan M Hernandez, David H Margulies, Ethan M Shevach
{"title":"抗体介导的HLA/LILR相互作用抑制打破先天免疫耐受并诱导抗肿瘤免疫。","authors":"Abir K Panda, Kannan Natarajan, Surajit Sinha, Jiansheng Jiang, Sruthi Chempati, Lisa F Boyd, Priyanka P Desai, Maja Buszko, Yong-Hee Kim, Soha Kazmi, Bryan Fisk, Martha E Teke, Carolina M Larrain, Kirsten Remmert, Andrew M Blakely, Iyadh Douagi, Jonathan M Hernandez, David H Margulies, Ethan M Shevach","doi":"10.1158/2326-6066.CIR-25-0343","DOIUrl":null,"url":null,"abstract":"<p><p>Immune check-point blockade for the treatment of malignancies has been focused on reversing inhibitory pathways in T lymphocytes. Natural killer (NK) cells are a potent innate defense against tumors and virally infected cells, but their therapeutic manipulation for anti-cancer immunity has been inadequately explored. Considerable attention has been focused on approaches to blocking inhibitory receptors on NK and myeloid cells. Most effort has been directed to the killer immunoglobulin-like receptors (KIR) and CD94/NKG2A on NK cells. Another set of receptors with similar function in both NK cells and myeloid cells is the leukocyte immunoglobulin like receptors (LILR) that interact with a wide variety of HLA molecules. Using pan-anti-HLA mAbs that recognize a conserved epitopic region on HLA also seen by LILR, we investigated their functional effects in several models of tumor immunity. The pan-anti-HLA-mAbs blocked the binding of most LILRs, did not block killer cell immunoglobulin-like receptors (KIR) or CD94/NKG2A/C or TCR recognition. They also activated dysfunctional NK cells explanted from a variety of human cancers, and resulted in enhancement of tumor immunity in humanized mice. The mAbs also exert direct anti-tumor effects. These results suggest that activation of innate immunity via disruption of HLA/LILR interactions is a potent approach for control of both primary tumors and potentially tumor metastases.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antibody Mediated Inhibition of HLA/LILR Interactions Breaks Innate Immune Tolerance and Induces Antitumor Immunity.\",\"authors\":\"Abir K Panda, Kannan Natarajan, Surajit Sinha, Jiansheng Jiang, Sruthi Chempati, Lisa F Boyd, Priyanka P Desai, Maja Buszko, Yong-Hee Kim, Soha Kazmi, Bryan Fisk, Martha E Teke, Carolina M Larrain, Kirsten Remmert, Andrew M Blakely, Iyadh Douagi, Jonathan M Hernandez, David H Margulies, Ethan M Shevach\",\"doi\":\"10.1158/2326-6066.CIR-25-0343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immune check-point blockade for the treatment of malignancies has been focused on reversing inhibitory pathways in T lymphocytes. Natural killer (NK) cells are a potent innate defense against tumors and virally infected cells, but their therapeutic manipulation for anti-cancer immunity has been inadequately explored. Considerable attention has been focused on approaches to blocking inhibitory receptors on NK and myeloid cells. Most effort has been directed to the killer immunoglobulin-like receptors (KIR) and CD94/NKG2A on NK cells. Another set of receptors with similar function in both NK cells and myeloid cells is the leukocyte immunoglobulin like receptors (LILR) that interact with a wide variety of HLA molecules. Using pan-anti-HLA mAbs that recognize a conserved epitopic region on HLA also seen by LILR, we investigated their functional effects in several models of tumor immunity. The pan-anti-HLA-mAbs blocked the binding of most LILRs, did not block killer cell immunoglobulin-like receptors (KIR) or CD94/NKG2A/C or TCR recognition. They also activated dysfunctional NK cells explanted from a variety of human cancers, and resulted in enhancement of tumor immunity in humanized mice. The mAbs also exert direct anti-tumor effects. These results suggest that activation of innate immunity via disruption of HLA/LILR interactions is a potent approach for control of both primary tumors and potentially tumor metastases.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-25-0343\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-25-0343","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Antibody Mediated Inhibition of HLA/LILR Interactions Breaks Innate Immune Tolerance and Induces Antitumor Immunity.
Immune check-point blockade for the treatment of malignancies has been focused on reversing inhibitory pathways in T lymphocytes. Natural killer (NK) cells are a potent innate defense against tumors and virally infected cells, but their therapeutic manipulation for anti-cancer immunity has been inadequately explored. Considerable attention has been focused on approaches to blocking inhibitory receptors on NK and myeloid cells. Most effort has been directed to the killer immunoglobulin-like receptors (KIR) and CD94/NKG2A on NK cells. Another set of receptors with similar function in both NK cells and myeloid cells is the leukocyte immunoglobulin like receptors (LILR) that interact with a wide variety of HLA molecules. Using pan-anti-HLA mAbs that recognize a conserved epitopic region on HLA also seen by LILR, we investigated their functional effects in several models of tumor immunity. The pan-anti-HLA-mAbs blocked the binding of most LILRs, did not block killer cell immunoglobulin-like receptors (KIR) or CD94/NKG2A/C or TCR recognition. They also activated dysfunctional NK cells explanted from a variety of human cancers, and resulted in enhancement of tumor immunity in humanized mice. The mAbs also exert direct anti-tumor effects. These results suggest that activation of innate immunity via disruption of HLA/LILR interactions is a potent approach for control of both primary tumors and potentially tumor metastases.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.