基于双蛋白嵌入的动态关注交互预测图模型。

IF 7.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Shunpeng Pang, Mingjian Jiang, Shugang Zhang, Shuang Wang, Zhen Li, Jing Sun, Yuanyuan Zhang, Li Guo
{"title":"基于双蛋白嵌入的动态关注交互预测图模型。","authors":"Shunpeng Pang, Mingjian Jiang, Shugang Zhang, Shuang Wang, Zhen Li, Jing Sun, Yuanyuan Zhang, Li Guo","doi":"10.1093/bib/bbaf517","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) are fundamental to biological processes, yet experimental determination of PPIs remains costly and labor-intensive. While computational methods have emerged as promising alternatives, sequence-based approaches face critical challenges: (1) effectively capturing long-range dependencies and critical biochemical patterns in variable-length sequences, and (2) balancing computational efficiency with sensitivity to subtle residue-level interactions. Here, we present Dual Protein Embedding-based Graph Model (DPEG), which leverages dynamic graph attention networks to enable robust sequence-driven PPI prediction. Unlike structure-dependent methods, DPEG operates solely on sequence data, bypassing the need for structural or domain annotations. Specifically, we employ ESM-2 to transform sequences into residue-level graphs, preserving evolutionary and physicochemical context. To address variable sequence lengths, we design a module that can represent protein sequences of arbitrary lengths as graph networks at the amino acid level. Further, a gated attention mechanism is introduced to adaptively refining residue representations. Finally, a dynamic attention mechanism prioritizes functionally critical motifs within the graph. Evaluated on four diverse PPI datasets spanning different species and interaction types, DPEG achieves state-of-the-art performance and demonstrates strong cross-dataset generalizability. By integrating deep sequence semantics with graph-based interaction modeling, DPEG advances sequence-only PPI prediction, offering a scalable and biologically plausible framework for proteome-wide studies.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-protein embedding-based graph model with dynamic attention for interaction prediction.\",\"authors\":\"Shunpeng Pang, Mingjian Jiang, Shugang Zhang, Shuang Wang, Zhen Li, Jing Sun, Yuanyuan Zhang, Li Guo\",\"doi\":\"10.1093/bib/bbaf517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-protein interactions (PPIs) are fundamental to biological processes, yet experimental determination of PPIs remains costly and labor-intensive. While computational methods have emerged as promising alternatives, sequence-based approaches face critical challenges: (1) effectively capturing long-range dependencies and critical biochemical patterns in variable-length sequences, and (2) balancing computational efficiency with sensitivity to subtle residue-level interactions. Here, we present Dual Protein Embedding-based Graph Model (DPEG), which leverages dynamic graph attention networks to enable robust sequence-driven PPI prediction. Unlike structure-dependent methods, DPEG operates solely on sequence data, bypassing the need for structural or domain annotations. Specifically, we employ ESM-2 to transform sequences into residue-level graphs, preserving evolutionary and physicochemical context. To address variable sequence lengths, we design a module that can represent protein sequences of arbitrary lengths as graph networks at the amino acid level. Further, a gated attention mechanism is introduced to adaptively refining residue representations. Finally, a dynamic attention mechanism prioritizes functionally critical motifs within the graph. Evaluated on four diverse PPI datasets spanning different species and interaction types, DPEG achieves state-of-the-art performance and demonstrates strong cross-dataset generalizability. By integrating deep sequence semantics with graph-based interaction modeling, DPEG advances sequence-only PPI prediction, offering a scalable and biologically plausible framework for proteome-wide studies.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12486248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf517\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf517","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质-蛋白质相互作用(PPIs)是生物过程的基础,但PPIs的实验测定仍然是昂贵和劳动密集型的。虽然计算方法已经成为有希望的替代方法,但基于序列的方法面临着关键的挑战:(1)有效地捕获可变长度序列中的远程依赖关系和关键生化模式,以及(2)平衡计算效率与对细微残留物水平相互作用的敏感性。在这里,我们提出了基于双蛋白嵌入的图模型(DPEG),它利用动态图注意力网络来实现鲁棒的序列驱动PPI预测。与依赖于结构的方法不同,DPEG只对序列数据进行操作,而不需要结构或领域注释。具体来说,我们使用ESM-2将序列转换为残差级图,保留进化和物理化学背景。为了解决可变序列长度的问题,我们设计了一个模块,可以在氨基酸水平上将任意长度的蛋白质序列表示为图网络。此外,引入了一种门控注意机制来自适应地精炼残馀表示。最后,动态注意机制在图中优先考虑功能关键的主题。在四种不同的PPI数据集上进行了评估,这些数据集涵盖了不同的物种和相互作用类型,DPEG达到了最先进的性能,并显示出强大的跨数据集泛化能力。通过将深度序列语义与基于图的交互建模相结合,DPEG推进了仅序列的PPI预测,为蛋白质组研究提供了可扩展且生物学上合理的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-protein embedding-based graph model with dynamic attention for interaction prediction.

Protein-protein interactions (PPIs) are fundamental to biological processes, yet experimental determination of PPIs remains costly and labor-intensive. While computational methods have emerged as promising alternatives, sequence-based approaches face critical challenges: (1) effectively capturing long-range dependencies and critical biochemical patterns in variable-length sequences, and (2) balancing computational efficiency with sensitivity to subtle residue-level interactions. Here, we present Dual Protein Embedding-based Graph Model (DPEG), which leverages dynamic graph attention networks to enable robust sequence-driven PPI prediction. Unlike structure-dependent methods, DPEG operates solely on sequence data, bypassing the need for structural or domain annotations. Specifically, we employ ESM-2 to transform sequences into residue-level graphs, preserving evolutionary and physicochemical context. To address variable sequence lengths, we design a module that can represent protein sequences of arbitrary lengths as graph networks at the amino acid level. Further, a gated attention mechanism is introduced to adaptively refining residue representations. Finally, a dynamic attention mechanism prioritizes functionally critical motifs within the graph. Evaluated on four diverse PPI datasets spanning different species and interaction types, DPEG achieves state-of-the-art performance and demonstrates strong cross-dataset generalizability. By integrating deep sequence semantics with graph-based interaction modeling, DPEG advances sequence-only PPI prediction, offering a scalable and biologically plausible framework for proteome-wide studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信