Yeo Jun Yoon, Seungbeom Seo, Sangwon Lee, Hyunkeong Lim, Kyobin Choo, Daesung Kim, Hyunkyung Han, Minjae So, Hosung Kang, Seongjin Kang, Dongwoo Kim, Young-Gun Lee, Dongho Shin, Tae Joo Jeon, Mijin Yun
{"title":"基于深度学习的CT分割的Centiloid值:freesurfer的有效替代品。","authors":"Yeo Jun Yoon, Seungbeom Seo, Sangwon Lee, Hyunkeong Lim, Kyobin Choo, Daesung Kim, Hyunkyung Han, Minjae So, Hosung Kang, Seongjin Kang, Dongwoo Kim, Young-Gun Lee, Dongho Shin, Tae Joo Jeon, Mijin Yun","doi":"10.1186/s13195-025-01860-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Amyloid PET/CT is essential for quantifying amyloid-beta (Aβ) deposition in Alzheimer's disease (AD), with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and evaluated its performance relative to standard pipelines.</p><p><strong>Methods: </strong>A total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB) PET/CT and MRI. Based on visual assessment, 207 patients were classified as Aβ-positive and 76 as Aβ-negative. PET images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines. Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare pipelines and determine the optimal CL threshold relative to visual Aβ assessment.</p><p><strong>Results: </strong>The CT parcellation showed high concordance with the FS and provided reliable CL quantification (R² = 0.99). Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCI. ROC analyses confirmed comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.</p><p><strong>Conclusions: </strong>Our findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate spatial alignment, reducing registration errors and supporting more reliable and precise quantification.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"212"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482646/pdf/","citationCount":"0","resultStr":"{\"title\":\"Centiloid values from deep learning-based CT parcellation: a valid alternative to freesurfer.\",\"authors\":\"Yeo Jun Yoon, Seungbeom Seo, Sangwon Lee, Hyunkeong Lim, Kyobin Choo, Daesung Kim, Hyunkyung Han, Minjae So, Hosung Kang, Seongjin Kang, Dongwoo Kim, Young-Gun Lee, Dongho Shin, Tae Joo Jeon, Mijin Yun\",\"doi\":\"10.1186/s13195-025-01860-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Amyloid PET/CT is essential for quantifying amyloid-beta (Aβ) deposition in Alzheimer's disease (AD), with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and evaluated its performance relative to standard pipelines.</p><p><strong>Methods: </strong>A total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB) PET/CT and MRI. Based on visual assessment, 207 patients were classified as Aβ-positive and 76 as Aβ-negative. PET images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines. Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare pipelines and determine the optimal CL threshold relative to visual Aβ assessment.</p><p><strong>Results: </strong>The CT parcellation showed high concordance with the FS and provided reliable CL quantification (R² = 0.99). Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCI. ROC analyses confirmed comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.</p><p><strong>Conclusions: </strong>Our findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate spatial alignment, reducing registration errors and supporting more reliable and precise quantification.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"17 1\",\"pages\":\"212\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12482646/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-025-01860-1\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01860-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Centiloid values from deep learning-based CT parcellation: a valid alternative to freesurfer.
Background: Amyloid PET/CT is essential for quantifying amyloid-beta (Aβ) deposition in Alzheimer's disease (AD), with the Centiloid (CL) scale standardizing measurements across imaging centers. However, MRI-based CL pipelines face challenges: high cost, contraindications, and patient burden. To address these challenges, we developed a deep learning-based CT parcellation pipeline calibrated to the standard CL scale using CT images from PET/CT scans and evaluated its performance relative to standard pipelines.
Methods: A total of 306 participants (23 young controls [YCs] and 283 patients) underwent 18 F-florbetaben (FBB) PET/CT and MRI. Based on visual assessment, 207 patients were classified as Aβ-positive and 76 as Aβ-negative. PET images were processed using the CT parcellation pipeline and compared to FreeSurfer (FS) and standard pipelines. Agreement was assessed via regression analyses. Effect size, variance, and ROC analyses were used to compare pipelines and determine the optimal CL threshold relative to visual Aβ assessment.
Results: The CT parcellation showed high concordance with the FS and provided reliable CL quantification (R² = 0.99). Both pipelines demonstrated similar variance in YCs and effect sizes between YCs and ADCI. ROC analyses confirmed comparable accuracy and similar CL thresholds, supporting CT parcellation as a viable MRI-free alternative.
Conclusions: Our findings indicate that the CT parcellation pipeline achieves a level of accuracy similar to FS in CL quantification, demonstrating its reliability as an MRI-free alternative. In PET/CT, CT and PET are acquired sequentially within the same session on a shared bed and headrest, which helps maintain consistent positioning and adequate spatial alignment, reducing registration errors and supporting more reliable and precise quantification.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.