Brooke Wain, Gustavo P Borin, Elaine M Rudge, Benjamin Moore, Bruce R Lichtenstein, Andrew R Pickford, Victoria L Bemmer
{"title":"溶剂型溶解和沉淀是酶解聚对苯二甲酸乙酯有效的底物预处理吗?","authors":"Brooke Wain, Gustavo P Borin, Elaine M Rudge, Benjamin Moore, Bruce R Lichtenstein, Andrew R Pickford, Victoria L Bemmer","doi":"10.1039/d5fd00061k","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics are ubiquitous in modern society; however, their disposal at end-of-life remains challenging. Enzymatic recycling offers a potential low-energy solution to recycling poly(ethylene terephthalate) (PET); however, high-crystallinity substrates such as polyester textiles are recalcitrant to enzymatic hydrolysis. Current amorphisation pretreatments yield substrates amenable to enzymatic digestion; however, they account for a significant percentage of all process electricity requirements. Here we investigate dissolution-reprecipitation with the green solvents gamma-valerolactone and 2-isopropylphenol as a lower-energy pretreatment regime. We find that whilst there is only a minimal decrease in substrate crystallinity, activity of the benchmark PET hydrolase LCC<sup>ICCG</sup> is increased on all solvent-treated substrates. We show that GVL negatively impacts the thermostability of LCC<sup>ICCG</sup>, and both solvents dramatically decrease enzyme activity, from concentrations as low as 4%, highlighting the need for effective solvent removal following pretreatment. Finally, we show that IPP and GVL are effective for the removal of synthetic dyes from polyester textiles, enabling new applications for these solvents in PET recycling.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is solvent-based dissolution and precipitation an effective substrate pretreatment for the enzymatic depolymerisation of poly(ethylene terephthalate)?\",\"authors\":\"Brooke Wain, Gustavo P Borin, Elaine M Rudge, Benjamin Moore, Bruce R Lichtenstein, Andrew R Pickford, Victoria L Bemmer\",\"doi\":\"10.1039/d5fd00061k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastics are ubiquitous in modern society; however, their disposal at end-of-life remains challenging. Enzymatic recycling offers a potential low-energy solution to recycling poly(ethylene terephthalate) (PET); however, high-crystallinity substrates such as polyester textiles are recalcitrant to enzymatic hydrolysis. Current amorphisation pretreatments yield substrates amenable to enzymatic digestion; however, they account for a significant percentage of all process electricity requirements. Here we investigate dissolution-reprecipitation with the green solvents gamma-valerolactone and 2-isopropylphenol as a lower-energy pretreatment regime. We find that whilst there is only a minimal decrease in substrate crystallinity, activity of the benchmark PET hydrolase LCC<sup>ICCG</sup> is increased on all solvent-treated substrates. We show that GVL negatively impacts the thermostability of LCC<sup>ICCG</sup>, and both solvents dramatically decrease enzyme activity, from concentrations as low as 4%, highlighting the need for effective solvent removal following pretreatment. Finally, we show that IPP and GVL are effective for the removal of synthetic dyes from polyester textiles, enabling new applications for these solvents in PET recycling.</p>\",\"PeriodicalId\":76,\"journal\":{\"name\":\"Faraday Discussions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Faraday Discussions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5fd00061k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00061k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Is solvent-based dissolution and precipitation an effective substrate pretreatment for the enzymatic depolymerisation of poly(ethylene terephthalate)?
Plastics are ubiquitous in modern society; however, their disposal at end-of-life remains challenging. Enzymatic recycling offers a potential low-energy solution to recycling poly(ethylene terephthalate) (PET); however, high-crystallinity substrates such as polyester textiles are recalcitrant to enzymatic hydrolysis. Current amorphisation pretreatments yield substrates amenable to enzymatic digestion; however, they account for a significant percentage of all process electricity requirements. Here we investigate dissolution-reprecipitation with the green solvents gamma-valerolactone and 2-isopropylphenol as a lower-energy pretreatment regime. We find that whilst there is only a minimal decrease in substrate crystallinity, activity of the benchmark PET hydrolase LCCICCG is increased on all solvent-treated substrates. We show that GVL negatively impacts the thermostability of LCCICCG, and both solvents dramatically decrease enzyme activity, from concentrations as low as 4%, highlighting the need for effective solvent removal following pretreatment. Finally, we show that IPP and GVL are effective for the removal of synthetic dyes from polyester textiles, enabling new applications for these solvents in PET recycling.