Jinyun Zhou, Yan Zhong, Chentao Jin, La Dong, Rui Zhou, Yuxing Wang, Zhengbo Fan, Xuesheng Zheng, Xiaoqing Xing, Jing Wang, Mei Tian, Hong Zhang
{"title":"一种新的电场方法通过改善P301S牛头病小鼠的细胞特异性病理改善认知功能。","authors":"Jinyun Zhou, Yan Zhong, Chentao Jin, La Dong, Rui Zhou, Yuxing Wang, Zhengbo Fan, Xuesheng Zheng, Xiaoqing Xing, Jing Wang, Mei Tian, Hong Zhang","doi":"10.1186/s13195-025-01859-8","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder, with no effective treatment currently available. Recently, non-pharmacological therapy, especially gamma frequency stimulation has shown promising therapeutic effects in Alzheimer's disease (AD) mouse models. Electric field (EF) is a non-invasive biophysical approach for neuronal protection. However, whether EF is beneficial in AD neuropathology remains unknown. In this study, we exposed the P301S tauopathy mouse model to EF at gamma frequency on the head. We demonstrated that EF treatment significantly improved the cognitive impairments in the P301S mice. This was accompanied by reduced tau pathologies, suppressed microglial activation, neuroinflammation and oxidative stress in the tauopathy mouse brain. Moreover, EF treatment induced cell-specific responses in neural cells, with neurons being more susceptible, followed by microglia and oligodendrocytes. EF also had favorable effects on synaptic protein in neurons, inflammatory response and complement signaling in microglia, and myelination in oligodendrocytes. This study provides strong evidence that EF at gamma frequency may have great potential to be a novel therapeutic intervention for P301S by attenuating neuropathology and offering neuroprotection.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"210"},"PeriodicalIF":7.6000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481757/pdf/","citationCount":"0","resultStr":"{\"title\":\"A novel electric field approach for improving cognitive function through ameliorating cell-specific pathology in P301S tauopathy mice.\",\"authors\":\"Jinyun Zhou, Yan Zhong, Chentao Jin, La Dong, Rui Zhou, Yuxing Wang, Zhengbo Fan, Xuesheng Zheng, Xiaoqing Xing, Jing Wang, Mei Tian, Hong Zhang\",\"doi\":\"10.1186/s13195-025-01859-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder, with no effective treatment currently available. Recently, non-pharmacological therapy, especially gamma frequency stimulation has shown promising therapeutic effects in Alzheimer's disease (AD) mouse models. Electric field (EF) is a non-invasive biophysical approach for neuronal protection. However, whether EF is beneficial in AD neuropathology remains unknown. In this study, we exposed the P301S tauopathy mouse model to EF at gamma frequency on the head. We demonstrated that EF treatment significantly improved the cognitive impairments in the P301S mice. This was accompanied by reduced tau pathologies, suppressed microglial activation, neuroinflammation and oxidative stress in the tauopathy mouse brain. Moreover, EF treatment induced cell-specific responses in neural cells, with neurons being more susceptible, followed by microglia and oligodendrocytes. EF also had favorable effects on synaptic protein in neurons, inflammatory response and complement signaling in microglia, and myelination in oligodendrocytes. This study provides strong evidence that EF at gamma frequency may have great potential to be a novel therapeutic intervention for P301S by attenuating neuropathology and offering neuroprotection.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"17 1\",\"pages\":\"210\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12481757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-025-01859-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-025-01859-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A novel electric field approach for improving cognitive function through ameliorating cell-specific pathology in P301S tauopathy mice.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder, with no effective treatment currently available. Recently, non-pharmacological therapy, especially gamma frequency stimulation has shown promising therapeutic effects in Alzheimer's disease (AD) mouse models. Electric field (EF) is a non-invasive biophysical approach for neuronal protection. However, whether EF is beneficial in AD neuropathology remains unknown. In this study, we exposed the P301S tauopathy mouse model to EF at gamma frequency on the head. We demonstrated that EF treatment significantly improved the cognitive impairments in the P301S mice. This was accompanied by reduced tau pathologies, suppressed microglial activation, neuroinflammation and oxidative stress in the tauopathy mouse brain. Moreover, EF treatment induced cell-specific responses in neural cells, with neurons being more susceptible, followed by microglia and oligodendrocytes. EF also had favorable effects on synaptic protein in neurons, inflammatory response and complement signaling in microglia, and myelination in oligodendrocytes. This study provides strong evidence that EF at gamma frequency may have great potential to be a novel therapeutic intervention for P301S by attenuating neuropathology and offering neuroprotection.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.