表面功能化如何控制石墨烯界面的受限电解质结构和动力学。

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Lyndon T M Hess, Nhi P T Nguyen, Anthony H Dee, Anant K Gupta, Zachary Kwon, Shuwen Yue
{"title":"表面功能化如何控制石墨烯界面的受限电解质结构和动力学。","authors":"Lyndon T M Hess, Nhi P T Nguyen, Anthony H Dee, Anant K Gupta, Zachary Kwon, Shuwen Yue","doi":"10.1021/acs.jpcb.5c04964","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding how surface chemistry modulates confined electrolyte behavior is critical for advancing electrochemical, membrane, and nanofluidic technologies. Here, we present a comprehensive molecular dynamics study of aqueous NaCl solutions confined between graphene functionalized with -COOH, -OH, ═O, and -CH<sub>3</sub> groups across multiple surface coverages and electrolyte concentrations. We systematically disentangle how functional group identity and abundance independently shape interfacial layering, ion adsorption, and water dynamics. Polar, hydrogen-bonding groups (-COOH, -OH) strongly structure the interface and suppress water mobility, while weakly polar (═O) and nonpolar groups (-CH<sub>3</sub>) lead to more diffuse, mobile profiles. Importantly, we show that functional group chemistry sets the morphology of interfacial structure, while coverage scales its intensity, a distinction that holds across electrolyte concentrations. These findings enable a quantitative framework for designing chemically heterogeneous surfaces that precisely modulate ion and solvent behavior in complex electrolyte environments.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Surface Functionalization Controls Confined Electrolyte Structure and Dynamics at Graphene Interfaces.\",\"authors\":\"Lyndon T M Hess, Nhi P T Nguyen, Anthony H Dee, Anant K Gupta, Zachary Kwon, Shuwen Yue\",\"doi\":\"10.1021/acs.jpcb.5c04964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding how surface chemistry modulates confined electrolyte behavior is critical for advancing electrochemical, membrane, and nanofluidic technologies. Here, we present a comprehensive molecular dynamics study of aqueous NaCl solutions confined between graphene functionalized with -COOH, -OH, ═O, and -CH<sub>3</sub> groups across multiple surface coverages and electrolyte concentrations. We systematically disentangle how functional group identity and abundance independently shape interfacial layering, ion adsorption, and water dynamics. Polar, hydrogen-bonding groups (-COOH, -OH) strongly structure the interface and suppress water mobility, while weakly polar (═O) and nonpolar groups (-CH<sub>3</sub>) lead to more diffuse, mobile profiles. Importantly, we show that functional group chemistry sets the morphology of interfacial structure, while coverage scales its intensity, a distinction that holds across electrolyte concentrations. These findings enable a quantitative framework for designing chemically heterogeneous surfaces that precisely modulate ion and solvent behavior in complex electrolyte environments.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c04964\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c04964","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解表面化学如何调节受限电解质的行为对于推进电化学、膜和纳米流体技术至关重要。在这里,我们提出了一项全面的分子动力学研究,该研究限制在具有-COOH、-OH、= O和-CH3基团功能化的石墨烯之间,跨越多种表面覆盖度和电解质浓度。我们系统地解开了官能团身份和丰度如何独立地形成界面分层,离子吸附和水动力学。极性氢键基团(-COOH, -OH)强烈地构造了界面并抑制了水的迁移,而弱极性(= O)和非极性基团(-CH3)导致了更分散的、可迁移的结构。重要的是,我们表明,官能团化学设定了界面结构的形态,而覆盖范围扩大了其强度,这一区别适用于电解质浓度。这些发现为设计在复杂电解质环境中精确调节离子和溶剂行为的化学非均质表面提供了定量框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Surface Functionalization Controls Confined Electrolyte Structure and Dynamics at Graphene Interfaces.

Understanding how surface chemistry modulates confined electrolyte behavior is critical for advancing electrochemical, membrane, and nanofluidic technologies. Here, we present a comprehensive molecular dynamics study of aqueous NaCl solutions confined between graphene functionalized with -COOH, -OH, ═O, and -CH3 groups across multiple surface coverages and electrolyte concentrations. We systematically disentangle how functional group identity and abundance independently shape interfacial layering, ion adsorption, and water dynamics. Polar, hydrogen-bonding groups (-COOH, -OH) strongly structure the interface and suppress water mobility, while weakly polar (═O) and nonpolar groups (-CH3) lead to more diffuse, mobile profiles. Importantly, we show that functional group chemistry sets the morphology of interfacial structure, while coverage scales its intensity, a distinction that holds across electrolyte concentrations. These findings enable a quantitative framework for designing chemically heterogeneous surfaces that precisely modulate ion and solvent behavior in complex electrolyte environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信