氯胆碱-尿素DES的σ-剖面特征与无限稀释活度系数的相关性:实验测定与机器学习解释

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Xinpeng Bi, Dezhi Cao, Xinyue Wang, Dingkai Hu, Qiang Wang
{"title":"氯胆碱-尿素DES的σ-剖面特征与无限稀释活度系数的相关性:实验测定与机器学习解释","authors":"Xinpeng Bi, Dezhi Cao, Xinyue Wang, Dingkai Hu, Qiang Wang","doi":"10.1021/acs.jpcb.5c04547","DOIUrl":null,"url":null,"abstract":"<p><p>This study integrates inverse gas chromatography (IGC) experiments with machine learning (ML) to systematically investigate the thermodynamic properties of choline chloride (ChCl)-urea (1:2) deep eutectic solvent (DES) and its interaction mechanisms with organic solvents. IGC measurements determined the infinite dilution activity coefficients (γ<sub>12</sub><sup>∞</sup>) and related thermodynamic parameters for 46 representative organic solvents within the temperature range of 303.15-343.15 K. Results revealed the hierarchy of solute-DES interaction strength: hydrocarbons (increasing with chain length) > alkenes > ethers > aromatics > ketones > esters > alcohols (weakest due to hydrogen bonding). To enhance γ<sub>12</sub><sup>∞</sup> prediction accuracy, a novel approach fused the quantized σ-profile partitioning descriptors of the DES with temperature as input features, constructing four ML models. Compared to the significant deviation of the COSMO-SAC model prediction (<i>R</i><sup>2</sup> = 0.8224), the Extreme Gradient Boosting (XGBoost) model demonstrated superior performance (test set <i>R</i><sup>2</sup> = 0.9979, average absolute relative deviation (AARD) < 20%). Feature importance analysis indicated that σ-profile regions corresponding to weak hydrogen bond acceptor (HBAs) character [S3: -0.0084 ≤ σ ≤ 0 e/Å<sup>2</sup>] and weak hydrogen bond donor character [S4, 0 ≤ σ ≤ 0.0084 e/Å<sup>2</sup>] contributed dominantly (42%) to the γ<sub>12</sub><sup>∞</sup> prediction. In contrast, the strongly polar region [S5, 0.0084 ≤ σ ≤ 0.02 e/Å<sup>2</sup>] reduced γ<sub>12</sub><sup>∞</sup> by enhancing interactions, confirming the \"like dissolves like\" principle. This framework enables high-precision γ<sub>12</sub><sup>∞</sup> prediction solely from molecular structures (Applicability Domain (AD) covers 93.85% of data), providing an efficient and reliable theoretical tool for DES-based green solvent design and optimization of industrial separation processes, such as benzene/methanol systems.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between σ-Profile Characteristics and Infinite Dilution Activity Coefficients of Choline Chloride-Urea DES: Experimental Determination and Machine Learning Interpretation.\",\"authors\":\"Xinpeng Bi, Dezhi Cao, Xinyue Wang, Dingkai Hu, Qiang Wang\",\"doi\":\"10.1021/acs.jpcb.5c04547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study integrates inverse gas chromatography (IGC) experiments with machine learning (ML) to systematically investigate the thermodynamic properties of choline chloride (ChCl)-urea (1:2) deep eutectic solvent (DES) and its interaction mechanisms with organic solvents. IGC measurements determined the infinite dilution activity coefficients (γ<sub>12</sub><sup>∞</sup>) and related thermodynamic parameters for 46 representative organic solvents within the temperature range of 303.15-343.15 K. Results revealed the hierarchy of solute-DES interaction strength: hydrocarbons (increasing with chain length) > alkenes > ethers > aromatics > ketones > esters > alcohols (weakest due to hydrogen bonding). To enhance γ<sub>12</sub><sup>∞</sup> prediction accuracy, a novel approach fused the quantized σ-profile partitioning descriptors of the DES with temperature as input features, constructing four ML models. Compared to the significant deviation of the COSMO-SAC model prediction (<i>R</i><sup>2</sup> = 0.8224), the Extreme Gradient Boosting (XGBoost) model demonstrated superior performance (test set <i>R</i><sup>2</sup> = 0.9979, average absolute relative deviation (AARD) < 20%). Feature importance analysis indicated that σ-profile regions corresponding to weak hydrogen bond acceptor (HBAs) character [S3: -0.0084 ≤ σ ≤ 0 e/Å<sup>2</sup>] and weak hydrogen bond donor character [S4, 0 ≤ σ ≤ 0.0084 e/Å<sup>2</sup>] contributed dominantly (42%) to the γ<sub>12</sub><sup>∞</sup> prediction. In contrast, the strongly polar region [S5, 0.0084 ≤ σ ≤ 0.02 e/Å<sup>2</sup>] reduced γ<sub>12</sub><sup>∞</sup> by enhancing interactions, confirming the \\\"like dissolves like\\\" principle. This framework enables high-precision γ<sub>12</sub><sup>∞</sup> prediction solely from molecular structures (Applicability Domain (AD) covers 93.85% of data), providing an efficient and reliable theoretical tool for DES-based green solvent design and optimization of industrial separation processes, such as benzene/methanol systems.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.5c04547\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.5c04547","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究将反相气相色谱(IGC)实验与机器学习(ML)相结合,系统研究氯化胆碱(ChCl)-尿素(1:2)深度共晶溶剂(DES)的热力学性质及其与有机溶剂的相互作用机制。IGC测定了46种代表性有机溶剂在303.15 ~ 343.15 K温度范围内的无限稀释活度系数(γ - 12∞)及相关热力学参数。结果表明,溶质- des相互作用强度的等级为烃类(随链长增加)>烯烃>醚>芳烃>酮>酯>醇(氢键作用最弱)。为了提高γ - 12∞预测精度,该方法融合了以温度为输入特征的DES的量化σ-剖面划分描述符,构建了4个ML模型。与cosmos - sac模型预测的显著偏差(R2 = 0.8224)相比,Extreme Gradient Boosting (XGBoost)模型表现出更优的性能(检验集R2 = 0.9979,平均绝对相对偏差(AARD) < 20%)。特征重要性分析表明,弱氢键受体(HBAs)特征[S3: -0.0084≤σ≤0 e/Å2]和弱氢键给体特征[S4, 0≤σ≤0.0084 e/Å2]对应的σ-轮廓区对γ - 12∞预测的贡献占主导地位(42%)。相反,强极性区[S5, 0.0084≤σ≤0.02 e/Å2]通过增强相互作用降低了γ - 12∞,证实了“相似物溶解相似物”的原理。该框架可实现仅从分子结构进行高精度γ - 12∞预测(适用域(AD)覆盖93.85%的数据),为基于des的绿色溶剂设计和工业分离过程(如苯/甲醇体系)的优化提供了高效可靠的理论工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation between σ-Profile Characteristics and Infinite Dilution Activity Coefficients of Choline Chloride-Urea DES: Experimental Determination and Machine Learning Interpretation.

This study integrates inverse gas chromatography (IGC) experiments with machine learning (ML) to systematically investigate the thermodynamic properties of choline chloride (ChCl)-urea (1:2) deep eutectic solvent (DES) and its interaction mechanisms with organic solvents. IGC measurements determined the infinite dilution activity coefficients (γ12) and related thermodynamic parameters for 46 representative organic solvents within the temperature range of 303.15-343.15 K. Results revealed the hierarchy of solute-DES interaction strength: hydrocarbons (increasing with chain length) > alkenes > ethers > aromatics > ketones > esters > alcohols (weakest due to hydrogen bonding). To enhance γ12 prediction accuracy, a novel approach fused the quantized σ-profile partitioning descriptors of the DES with temperature as input features, constructing four ML models. Compared to the significant deviation of the COSMO-SAC model prediction (R2 = 0.8224), the Extreme Gradient Boosting (XGBoost) model demonstrated superior performance (test set R2 = 0.9979, average absolute relative deviation (AARD) < 20%). Feature importance analysis indicated that σ-profile regions corresponding to weak hydrogen bond acceptor (HBAs) character [S3: -0.0084 ≤ σ ≤ 0 e/Å2] and weak hydrogen bond donor character [S4, 0 ≤ σ ≤ 0.0084 e/Å2] contributed dominantly (42%) to the γ12 prediction. In contrast, the strongly polar region [S5, 0.0084 ≤ σ ≤ 0.02 e/Å2] reduced γ12 by enhancing interactions, confirming the "like dissolves like" principle. This framework enables high-precision γ12 prediction solely from molecular structures (Applicability Domain (AD) covers 93.85% of data), providing an efficient and reliable theoretical tool for DES-based green solvent design and optimization of industrial separation processes, such as benzene/methanol systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信