利用形态学控制和自组装单层膜增强近红外有机光电探测器的暗电流抑制

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Fu, Zelong Li, Yifan Ding, Maojie Zhang, Yong Cui, Hong Zhang, Xiaoliang Mo, Rongjun Zhang, Guangzheng Zuo
{"title":"利用形态学控制和自组装单层膜增强近红外有机光电探测器的暗电流抑制","authors":"Wei Fu,&nbsp;Zelong Li,&nbsp;Yifan Ding,&nbsp;Maojie Zhang,&nbsp;Yong Cui,&nbsp;Hong Zhang,&nbsp;Xiaoliang Mo,&nbsp;Rongjun Zhang,&nbsp;Guangzheng Zuo","doi":"10.1002/adom.202500362","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the challenges of high dark current density and low responsivity in near-infrared organic photodetectors (NIR-OPDs) through a synergistic strategy combining morphology control and interface engineering. A thick active layer incorporating solid additives effectively reduces the dark current density while preserving efficient charge transport. Subsequently, molecular interface modification using [2-(9HCarbazol-9-yl)ethyl]phosphonic acid (2PACz) further suppresses the dark current and enhances photoresponsivity. Drift-diffusion modeling, incorporating trap states, reveals that the 2PACz forms a dipole layer at the interface, lowering the injection barrier by ≈0.3 eV and eliminating traps within the device. Together, these strategies reduce the dark current density from the order of 10<sup>−5</sup> A cm<sup>−2</sup> (control) to the order of 10<sup>−8</sup> A cm<sup>−2</sup> at −1 V, and enhance the responsivity (<i>R</i>) from 0.50 A W<sup>−1</sup>(control) to 0.58 A W<sup>−1</sup> at 864 nm. The resulting device exhibits a high shot-noise-limited specific detectivity (<i>D</i><sub>sℎ</sub><sup>∗</sup>) reaching 9.57 × 10<sup>13</sup> Jones, highlighting its exceptional sensitivity. This study demonstrates that combining morphology control with interface engineering effectively overcomes key performance limitations in NIR-OPDs, providing valuable insights for the design of high-performance organic photodetectors.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 28","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Dark Current Suppression in Near-Infrared Organic Photodetectors with Morphology Control and Self-Assembled Monolayers\",\"authors\":\"Wei Fu,&nbsp;Zelong Li,&nbsp;Yifan Ding,&nbsp;Maojie Zhang,&nbsp;Yong Cui,&nbsp;Hong Zhang,&nbsp;Xiaoliang Mo,&nbsp;Rongjun Zhang,&nbsp;Guangzheng Zuo\",\"doi\":\"10.1002/adom.202500362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the challenges of high dark current density and low responsivity in near-infrared organic photodetectors (NIR-OPDs) through a synergistic strategy combining morphology control and interface engineering. A thick active layer incorporating solid additives effectively reduces the dark current density while preserving efficient charge transport. Subsequently, molecular interface modification using [2-(9HCarbazol-9-yl)ethyl]phosphonic acid (2PACz) further suppresses the dark current and enhances photoresponsivity. Drift-diffusion modeling, incorporating trap states, reveals that the 2PACz forms a dipole layer at the interface, lowering the injection barrier by ≈0.3 eV and eliminating traps within the device. Together, these strategies reduce the dark current density from the order of 10<sup>−5</sup> A cm<sup>−2</sup> (control) to the order of 10<sup>−8</sup> A cm<sup>−2</sup> at −1 V, and enhance the responsivity (<i>R</i>) from 0.50 A W<sup>−1</sup>(control) to 0.58 A W<sup>−1</sup> at 864 nm. The resulting device exhibits a high shot-noise-limited specific detectivity (<i>D</i><sub>sℎ</sub><sup>∗</sup>) reaching 9.57 × 10<sup>13</sup> Jones, highlighting its exceptional sensitivity. This study demonstrates that combining morphology control with interface engineering effectively overcomes key performance limitations in NIR-OPDs, providing valuable insights for the design of high-performance organic photodetectors.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 28\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500362\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500362","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过形态学控制和界面工程相结合的协同策略,解决了近红外有机光电探测器(NIR-OPDs)高暗电流密度和低响应率的挑战。含有固体添加剂的厚活性层有效地降低了暗电流密度,同时保持了有效的电荷输运。随后,用[2-(9hcarbazol -9-酰基)乙基]膦酸(2PACz)修饰分子界面,进一步抑制暗电流,提高光响应性。结合陷阱态的漂移扩散模型表明,2PACz在界面处形成偶极子层,使注入势垒降低约0.3 eV,消除了器件内的陷阱。总之,这些策略将暗电流密度从10−5 A cm−2(对照组)降低到10−8 A cm−2(−1 V),并将响应度(R)从0.50 A W−1(对照组)提高到0.58 A W−1(864 nm)。所得到的器件显示出高的脉冲噪声限制比探测率(Ds ),达到9.57 × 1013琼斯,突出了其特殊的灵敏度。该研究表明,将形貌控制与界面工程相结合有效地克服了nir - opd的关键性能限制,为高性能有机光电探测器的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing Dark Current Suppression in Near-Infrared Organic Photodetectors with Morphology Control and Self-Assembled Monolayers

Enhancing Dark Current Suppression in Near-Infrared Organic Photodetectors with Morphology Control and Self-Assembled Monolayers

This study addresses the challenges of high dark current density and low responsivity in near-infrared organic photodetectors (NIR-OPDs) through a synergistic strategy combining morphology control and interface engineering. A thick active layer incorporating solid additives effectively reduces the dark current density while preserving efficient charge transport. Subsequently, molecular interface modification using [2-(9HCarbazol-9-yl)ethyl]phosphonic acid (2PACz) further suppresses the dark current and enhances photoresponsivity. Drift-diffusion modeling, incorporating trap states, reveals that the 2PACz forms a dipole layer at the interface, lowering the injection barrier by ≈0.3 eV and eliminating traps within the device. Together, these strategies reduce the dark current density from the order of 10−5 A cm−2 (control) to the order of 10−8 A cm−2 at −1 V, and enhance the responsivity (R) from 0.50 A W−1(control) to 0.58 A W−1 at 864 nm. The resulting device exhibits a high shot-noise-limited specific detectivity (Dsℎ) reaching 9.57 × 1013 Jones, highlighting its exceptional sensitivity. This study demonstrates that combining morphology control with interface engineering effectively overcomes key performance limitations in NIR-OPDs, providing valuable insights for the design of high-performance organic photodetectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信