钛锶钡-羟基磷灰石纳米复合材料:增强骨再生的电学、力学和生物学特性的表征

IF 2.6 4区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
ChemNanoMat Pub Date : 2025-09-02 DOI:10.1002/cnma.202500169
Raziye Hayati, Fatemeh Khosravizadeh, Lobat Tayebi
{"title":"钛锶钡-羟基磷灰石纳米复合材料:增强骨再生的电学、力学和生物学特性的表征","authors":"Raziye Hayati,&nbsp;Fatemeh Khosravizadeh,&nbsp;Lobat Tayebi","doi":"10.1002/cnma.202500169","DOIUrl":null,"url":null,"abstract":"<p>Electrets and piezoelectric materials hold immense promise for enhancing bone regeneration strategies. Barium titanate and its solid solutions hold significant potential for bone regeneration strategies. However, addressing the challenges related to biocompatibility, optimization, and manufacturing is essential before the possible clinical applications. This study focuses on barium strontium titanate (BST)-hydroxyapatite (HA) scaffolds as a potential bone growth enhancer. Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> is prepared by mixing the barium titanate and strontium titanate commercial nano powders and HA is synthesized using the sol–gel method, and BST-xHA composite samples are fabricated using conventional solid-state method. The samples are sintered at 1200–1300 °C, and the phase structure, microstructure, density, and electrical and mechanical properties are evaluated. Biological assessments, including MTT tests, are conducted. The electrical properties of composite samples improve, and the one with 20 wt% HA shows the highest amount of fracture toughness. Importantly, MTT assay results confirm the nontoxic nature of the BST-HA composite samples with the best OD value in BST-40 HA composite sample, making it a promising candidate for bone regeneration applications.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"11 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barium Strontium Titanate-Hydroxyapatite Nanocomposites: Characterization of Electrical, Mechanical, and Biological Properties for Enhanced Bone Regeneration\",\"authors\":\"Raziye Hayati,&nbsp;Fatemeh Khosravizadeh,&nbsp;Lobat Tayebi\",\"doi\":\"10.1002/cnma.202500169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrets and piezoelectric materials hold immense promise for enhancing bone regeneration strategies. Barium titanate and its solid solutions hold significant potential for bone regeneration strategies. However, addressing the challenges related to biocompatibility, optimization, and manufacturing is essential before the possible clinical applications. This study focuses on barium strontium titanate (BST)-hydroxyapatite (HA) scaffolds as a potential bone growth enhancer. Ba<sub>0.5</sub>Sr<sub>0.5</sub>TiO<sub>3</sub> is prepared by mixing the barium titanate and strontium titanate commercial nano powders and HA is synthesized using the sol–gel method, and BST-xHA composite samples are fabricated using conventional solid-state method. The samples are sintered at 1200–1300 °C, and the phase structure, microstructure, density, and electrical and mechanical properties are evaluated. Biological assessments, including MTT tests, are conducted. The electrical properties of composite samples improve, and the one with 20 wt% HA shows the highest amount of fracture toughness. Importantly, MTT assay results confirm the nontoxic nature of the BST-HA composite samples with the best OD value in BST-40 HA composite sample, making it a promising candidate for bone regeneration applications.</p>\",\"PeriodicalId\":54339,\"journal\":{\"name\":\"ChemNanoMat\",\"volume\":\"11 10\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemNanoMat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500169\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://aces.onlinelibrary.wiley.com/doi/10.1002/cnma.202500169","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

驻极体和压电材料在增强骨再生策略方面具有巨大的前景。钛酸钡及其固体溶液在骨再生策略中具有重要的潜力。然而,在可能的临床应用之前,解决与生物相容性、优化和制造相关的挑战是必不可少的。本研究的重点是钛酸钡锶(BST)-羟基磷灰石(HA)支架作为潜在的骨生长促进剂。采用钛酸钡和钛酸锶混合制备了Ba0.5Sr0.5TiO3,采用溶胶-凝胶法合成了HA,采用常规固相法制备了BST-xHA复合样品。样品在1200-1300℃下烧结,并对其相结构、显微组织、密度、电学和力学性能进行了评价。进行了生物评估,包括MTT测试。复合材料的电学性能得到改善,含20 wt% HA的复合材料的断裂韧性最高。重要的是,MTT实验结果证实了BST-HA复合样品的无毒性质,并且在BST-40 HA复合样品中具有最佳OD值,使其成为骨再生应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Barium Strontium Titanate-Hydroxyapatite Nanocomposites: Characterization of Electrical, Mechanical, and Biological Properties for Enhanced Bone Regeneration

Barium Strontium Titanate-Hydroxyapatite Nanocomposites: Characterization of Electrical, Mechanical, and Biological Properties for Enhanced Bone Regeneration

Electrets and piezoelectric materials hold immense promise for enhancing bone regeneration strategies. Barium titanate and its solid solutions hold significant potential for bone regeneration strategies. However, addressing the challenges related to biocompatibility, optimization, and manufacturing is essential before the possible clinical applications. This study focuses on barium strontium titanate (BST)-hydroxyapatite (HA) scaffolds as a potential bone growth enhancer. Ba0.5Sr0.5TiO3 is prepared by mixing the barium titanate and strontium titanate commercial nano powders and HA is synthesized using the sol–gel method, and BST-xHA composite samples are fabricated using conventional solid-state method. The samples are sintered at 1200–1300 °C, and the phase structure, microstructure, density, and electrical and mechanical properties are evaluated. Biological assessments, including MTT tests, are conducted. The electrical properties of composite samples improve, and the one with 20 wt% HA shows the highest amount of fracture toughness. Importantly, MTT assay results confirm the nontoxic nature of the BST-HA composite samples with the best OD value in BST-40 HA composite sample, making it a promising candidate for bone regeneration applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemNanoMat
ChemNanoMat Energy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍: ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信