利用红外光谱跟踪表面依赖性的氧化铈纳米颗粒从特高压到环境压力的转化

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Lachlan Caulfield, , , Zairan Yu, , , Yue Gu, , , Chengwu Yang, , , Simon Falkner, , , Peter Weidler, , , Matthias Schwotzer, , , Claus Feldmann, , , Yuemin Wang*, , and , Christof Wöll*, 
{"title":"利用红外光谱跟踪表面依赖性的氧化铈纳米颗粒从特高压到环境压力的转化","authors":"Lachlan Caulfield,&nbsp;, ,&nbsp;Zairan Yu,&nbsp;, ,&nbsp;Yue Gu,&nbsp;, ,&nbsp;Chengwu Yang,&nbsp;, ,&nbsp;Simon Falkner,&nbsp;, ,&nbsp;Peter Weidler,&nbsp;, ,&nbsp;Matthias Schwotzer,&nbsp;, ,&nbsp;Claus Feldmann,&nbsp;, ,&nbsp;Yuemin Wang*,&nbsp;, and ,&nbsp;Christof Wöll*,&nbsp;","doi":"10.1021/acs.jpcc.5c04507","DOIUrl":null,"url":null,"abstract":"<p >Understanding how surface structures and coordination environments of metal oxide powders evolve from ultrahigh vacuum (UHV) to ambient pressure is a central challenge in heterogeneous catalysis. Surface-ligand infrared spectroscopy (SLIR) provides in situ, pressure-independent access to these transformations. We report a systematic IR spectroscopic study of ceria nanoparticles with distinct morphologies─octahedra, rods, cubes, and sponges─using CO as a probe molecule. By combining UHV-FTIRS and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we track morphology-dependent vibrational signatures across wide pressure and temperature ranges. Facet-specific CO bands are identified using polarization-resolved infrared reflection absorption spectroscopy (IRRAS) reference data from low-index ceria single crystals, enabling assignments to oxidized and reduced surface sites. Despite the complexity of the spectra, a coherent interpretation is achieved, offering insights into the atomic-level behavior of pure ceria catalysts. Remarkably, only the nanooctahedra exhibit the expected CO adsorption response at atmospheric pressure, while all other shapes show reversible dynamic changes.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 39","pages":"17643–17652"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Facet-Dependent Surface Transformations of Ceria Nanoparticles from UHV to Ambient Pressure via Infrared Spectroscopy\",\"authors\":\"Lachlan Caulfield,&nbsp;, ,&nbsp;Zairan Yu,&nbsp;, ,&nbsp;Yue Gu,&nbsp;, ,&nbsp;Chengwu Yang,&nbsp;, ,&nbsp;Simon Falkner,&nbsp;, ,&nbsp;Peter Weidler,&nbsp;, ,&nbsp;Matthias Schwotzer,&nbsp;, ,&nbsp;Claus Feldmann,&nbsp;, ,&nbsp;Yuemin Wang*,&nbsp;, and ,&nbsp;Christof Wöll*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.5c04507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding how surface structures and coordination environments of metal oxide powders evolve from ultrahigh vacuum (UHV) to ambient pressure is a central challenge in heterogeneous catalysis. Surface-ligand infrared spectroscopy (SLIR) provides in situ, pressure-independent access to these transformations. We report a systematic IR spectroscopic study of ceria nanoparticles with distinct morphologies─octahedra, rods, cubes, and sponges─using CO as a probe molecule. By combining UHV-FTIRS and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we track morphology-dependent vibrational signatures across wide pressure and temperature ranges. Facet-specific CO bands are identified using polarization-resolved infrared reflection absorption spectroscopy (IRRAS) reference data from low-index ceria single crystals, enabling assignments to oxidized and reduced surface sites. Despite the complexity of the spectra, a coherent interpretation is achieved, offering insights into the atomic-level behavior of pure ceria catalysts. Remarkably, only the nanooctahedra exhibit the expected CO adsorption response at atmospheric pressure, while all other shapes show reversible dynamic changes.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 39\",\"pages\":\"17643–17652\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04507\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c04507","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

了解金属氧化物粉末的表面结构和配位环境如何从超高真空(UHV)过渡到环境压力是多相催化的核心挑战。表面配体红外光谱(slr)提供了原位,压力无关的访问这些转化。我们报告了一个系统的红外光谱研究具有不同形态的二氧化铈纳米粒子─八面体、棒状、立方体和海绵─使用一氧化碳作为探针分子。通过结合UHV-FTIRS和漫反射红外傅立叶变换光谱(DRIFTS),我们在宽压力和温度范围内跟踪形貌相关的振动特征。利用偏振分辨红外反射吸收光谱(IRRAS)参考数据从低指数的二氧化铈单晶中识别出特定的CO波段,从而可以定位氧化和还原的表面位点。尽管光谱的复杂性,一个连贯的解释是实现,提供洞察纯二氧化铈催化剂的原子水平的行为。值得注意的是,在大气压下,只有纳米八面体表现出预期的CO吸附响应,而其他形状都表现出可逆的动态变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tracking Facet-Dependent Surface Transformations of Ceria Nanoparticles from UHV to Ambient Pressure via Infrared Spectroscopy

Tracking Facet-Dependent Surface Transformations of Ceria Nanoparticles from UHV to Ambient Pressure via Infrared Spectroscopy

Understanding how surface structures and coordination environments of metal oxide powders evolve from ultrahigh vacuum (UHV) to ambient pressure is a central challenge in heterogeneous catalysis. Surface-ligand infrared spectroscopy (SLIR) provides in situ, pressure-independent access to these transformations. We report a systematic IR spectroscopic study of ceria nanoparticles with distinct morphologies─octahedra, rods, cubes, and sponges─using CO as a probe molecule. By combining UHV-FTIRS and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), we track morphology-dependent vibrational signatures across wide pressure and temperature ranges. Facet-specific CO bands are identified using polarization-resolved infrared reflection absorption spectroscopy (IRRAS) reference data from low-index ceria single crystals, enabling assignments to oxidized and reduced surface sites. Despite the complexity of the spectra, a coherent interpretation is achieved, offering insights into the atomic-level behavior of pure ceria catalysts. Remarkably, only the nanooctahedra exhibit the expected CO adsorption response at atmospheric pressure, while all other shapes show reversible dynamic changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信