{"title":"高维双场量子密钥分配","authors":"Ronny Mueller, Mujtaba Zahidy, Leif Katsuo Oxenløwe, Søren Forchhammer, Davide Bacco","doi":"10.22331/q-2025-10-01-1869","DOIUrl":null,"url":null,"abstract":"Twin-Field Quantum Key Distribution (QKD) is a QKD protocol that uses single-photon interference to perform QKD over long distances. QKD protocols that encode information using high-dimensional quantum states can benefit from increased key rates and higher noise resilience. We define the essence of Twin-Field QKD and explore its generalization to higher dimensions. Further, we show that, ultimately, the Twin-Field protocol cannot be generalized to higher dimensions in accordance with our definition.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"33 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On High-Dimensional Twin-Field Quantum Key Distribution\",\"authors\":\"Ronny Mueller, Mujtaba Zahidy, Leif Katsuo Oxenløwe, Søren Forchhammer, Davide Bacco\",\"doi\":\"10.22331/q-2025-10-01-1869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twin-Field Quantum Key Distribution (QKD) is a QKD protocol that uses single-photon interference to perform QKD over long distances. QKD protocols that encode information using high-dimensional quantum states can benefit from increased key rates and higher noise resilience. We define the essence of Twin-Field QKD and explore its generalization to higher dimensions. Further, we show that, ultimately, the Twin-Field protocol cannot be generalized to higher dimensions in accordance with our definition.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2025-10-01-1869\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-10-01-1869","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
On High-Dimensional Twin-Field Quantum Key Distribution
Twin-Field Quantum Key Distribution (QKD) is a QKD protocol that uses single-photon interference to perform QKD over long distances. QKD protocols that encode information using high-dimensional quantum states can benefit from increased key rates and higher noise resilience. We define the essence of Twin-Field QKD and explore its generalization to higher dimensions. Further, we show that, ultimately, the Twin-Field protocol cannot be generalized to higher dimensions in accordance with our definition.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.