Mengyang Li, Xiujuan Li, Yinan Zheng, Zhenlong Wang, Luye Shi
{"title":"低氧条件下代谢模式调节的变化:分布在不同海拔的啮齿动物的比较研究","authors":"Mengyang Li, Xiujuan Li, Yinan Zheng, Zhenlong Wang, Luye Shi","doi":"10.1186/s12983-025-00582-2","DOIUrl":null,"url":null,"abstract":"Mammals dwelling at different altitudes exhibit distinct molecular mechanisms to adapt to low-oxygen environments owing to habitat-specific oxygen levels. Notably, these adaptations include energy metabolism patterns, which fundamentally sustain vital physiological functions. Skeletal muscle, a pivotal contributor to systemic energy metabolism, facilitates vertebrate body movement through the contraction and relaxation of muscle fibers and is highly dependent on mitochondrial substrate oxidation for energy production. This study focused on three rodent species inhabiting different altitudes: the Qinghai vole (Neodon fuscus), Brandt’s vole (Lasiopodomys brandtii), and Kunming mouse (Mus musculus). Using transcriptomics and quasi-targeted metabolomics, we systematically analyzed the differences in skeletal muscle metabolic regulation among the three rodent species before and after exposure to hypoxia, thereby revealing the underlying molecular mechanisms. In summary, N. fuscus, native to high-altitude environments, tended to sustain energy supplies through regulating fatty acid oxidation under low-oxygen conditions. Conversely, L. brandtii and M. musculus, acclimatized to middle- and low-altitude habitats, relied on aerobic oxidation and anaerobic glycolysis of glucose, respectively, for energy maintenance under hypoxic conditions. In addition to their differential metabolic preferences under hypoxic conditions, these three rodent species showed species-specific responses related to oxygen utilization, antioxidant defense mechanisms, and anti-inflammatory processes. This study provides insights into the metabolic response patterns of mammalian skeletal muscle under hypoxic conditions, thereby establishing a basis for future investigations on transcriptional–metabolic associations. ","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variation in metabolic pattern regulation under hypoxic conditions: a comparative study of rodents distributed at different altitudes\",\"authors\":\"Mengyang Li, Xiujuan Li, Yinan Zheng, Zhenlong Wang, Luye Shi\",\"doi\":\"10.1186/s12983-025-00582-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mammals dwelling at different altitudes exhibit distinct molecular mechanisms to adapt to low-oxygen environments owing to habitat-specific oxygen levels. Notably, these adaptations include energy metabolism patterns, which fundamentally sustain vital physiological functions. Skeletal muscle, a pivotal contributor to systemic energy metabolism, facilitates vertebrate body movement through the contraction and relaxation of muscle fibers and is highly dependent on mitochondrial substrate oxidation for energy production. This study focused on three rodent species inhabiting different altitudes: the Qinghai vole (Neodon fuscus), Brandt’s vole (Lasiopodomys brandtii), and Kunming mouse (Mus musculus). Using transcriptomics and quasi-targeted metabolomics, we systematically analyzed the differences in skeletal muscle metabolic regulation among the three rodent species before and after exposure to hypoxia, thereby revealing the underlying molecular mechanisms. In summary, N. fuscus, native to high-altitude environments, tended to sustain energy supplies through regulating fatty acid oxidation under low-oxygen conditions. Conversely, L. brandtii and M. musculus, acclimatized to middle- and low-altitude habitats, relied on aerobic oxidation and anaerobic glycolysis of glucose, respectively, for energy maintenance under hypoxic conditions. In addition to their differential metabolic preferences under hypoxic conditions, these three rodent species showed species-specific responses related to oxygen utilization, antioxidant defense mechanisms, and anti-inflammatory processes. This study provides insights into the metabolic response patterns of mammalian skeletal muscle under hypoxic conditions, thereby establishing a basis for future investigations on transcriptional–metabolic associations. \",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-025-00582-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-025-00582-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Variation in metabolic pattern regulation under hypoxic conditions: a comparative study of rodents distributed at different altitudes
Mammals dwelling at different altitudes exhibit distinct molecular mechanisms to adapt to low-oxygen environments owing to habitat-specific oxygen levels. Notably, these adaptations include energy metabolism patterns, which fundamentally sustain vital physiological functions. Skeletal muscle, a pivotal contributor to systemic energy metabolism, facilitates vertebrate body movement through the contraction and relaxation of muscle fibers and is highly dependent on mitochondrial substrate oxidation for energy production. This study focused on three rodent species inhabiting different altitudes: the Qinghai vole (Neodon fuscus), Brandt’s vole (Lasiopodomys brandtii), and Kunming mouse (Mus musculus). Using transcriptomics and quasi-targeted metabolomics, we systematically analyzed the differences in skeletal muscle metabolic regulation among the three rodent species before and after exposure to hypoxia, thereby revealing the underlying molecular mechanisms. In summary, N. fuscus, native to high-altitude environments, tended to sustain energy supplies through regulating fatty acid oxidation under low-oxygen conditions. Conversely, L. brandtii and M. musculus, acclimatized to middle- and low-altitude habitats, relied on aerobic oxidation and anaerobic glycolysis of glucose, respectively, for energy maintenance under hypoxic conditions. In addition to their differential metabolic preferences under hypoxic conditions, these three rodent species showed species-specific responses related to oxygen utilization, antioxidant defense mechanisms, and anti-inflammatory processes. This study provides insights into the metabolic response patterns of mammalian skeletal muscle under hypoxic conditions, thereby establishing a basis for future investigations on transcriptional–metabolic associations.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.