用于选择性检测CO2, CO, NO和BF3气体的氮化铊纳米传感器:从头开始分子动力学的见解

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Mandar Jatkar, Arpan Shah, Shubha Hegde, Tejas B G
{"title":"用于选择性检测CO2, CO, NO和BF3气体的氮化铊纳米传感器:从头开始分子动力学的见解","authors":"Mandar Jatkar, Arpan Shah, Shubha Hegde, Tejas B G","doi":"10.1002/adts.202501198","DOIUrl":null,"url":null,"abstract":"This study investigates the electronic properties of Thallium Nitride Nanoribbons (ThNNRs) in bare, pristine, and functionalized forms using density functional theory (DFT). The influence of nanoribbon width on structural stability and electronic characteristics is also examined. Bare ThNNRs exhibit metallic behavior with a zero bandgap, whereas pristine ThNNRs display semiconducting behavior, with their bandgap decreasing as the ribbon width increases. Functionalization with sensing molecules such as BF<jats:sub>3</jats:sub>, NO<jats:sub>2</jats:sub>, and CO<jats:sub>2</jats:sub> significantly alters the electronic response. In particular, NO<jats:sub>2</jats:sub>‐ and CO<jats:sub>2</jats:sub>‐functionalized ThNNRs undergo a semiconductor‐to‐metallic phase transition with increasing width. Sensitivity analysis reveals that sensitivity decreases with temperature, indicating an inverse relationship. Recovery time analysis shows that ThNNRs–BF<jats:sub>3</jats:sub> and ThNNRs–CO<jats:sub>2</jats:sub> configurations are minimally affected by temperature. In contrast, ThNNRs–NO<jats:sub>2</jats:sub> exhibits strong temperature dependence, with recovery times peaking at 34.13 s at 500 K. These findings demonstrate the tunable electronic properties of ThNNRs and underscore their potential in nanoelectronics and chemical sensing applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thallium Nitride Nanosensors for Selective Detection of CO2, CO, NO, and BF3 Gases: Insights from Ab Initio Molecular Dynamics\",\"authors\":\"Mandar Jatkar, Arpan Shah, Shubha Hegde, Tejas B G\",\"doi\":\"10.1002/adts.202501198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the electronic properties of Thallium Nitride Nanoribbons (ThNNRs) in bare, pristine, and functionalized forms using density functional theory (DFT). The influence of nanoribbon width on structural stability and electronic characteristics is also examined. Bare ThNNRs exhibit metallic behavior with a zero bandgap, whereas pristine ThNNRs display semiconducting behavior, with their bandgap decreasing as the ribbon width increases. Functionalization with sensing molecules such as BF<jats:sub>3</jats:sub>, NO<jats:sub>2</jats:sub>, and CO<jats:sub>2</jats:sub> significantly alters the electronic response. In particular, NO<jats:sub>2</jats:sub>‐ and CO<jats:sub>2</jats:sub>‐functionalized ThNNRs undergo a semiconductor‐to‐metallic phase transition with increasing width. Sensitivity analysis reveals that sensitivity decreases with temperature, indicating an inverse relationship. Recovery time analysis shows that ThNNRs–BF<jats:sub>3</jats:sub> and ThNNRs–CO<jats:sub>2</jats:sub> configurations are minimally affected by temperature. In contrast, ThNNRs–NO<jats:sub>2</jats:sub> exhibits strong temperature dependence, with recovery times peaking at 34.13 s at 500 K. These findings demonstrate the tunable electronic properties of ThNNRs and underscore their potential in nanoelectronics and chemical sensing applications.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501198\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501198","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文利用密度泛函理论(DFT)研究了氮化铊纳米带(ThNNRs)在裸态、原始态和功能化态下的电子特性。研究了纳米带宽度对结构稳定性和电子特性的影响。裸ThNNRs表现出零带隙的金属行为,而原始ThNNRs表现出半导体行为,其带隙随着带宽度的增加而减小。功能化的传感分子,如BF3, NO2和CO2显著改变电子响应。特别是,NO2和CO2功能化的thnnr随着宽度的增加,经历了半导体到金属的相变。灵敏度分析表明,灵敏度随温度的升高而降低,呈反比关系。恢复时间分析表明,ThNNRs-BF3和ThNNRs-CO2构型受温度影响最小。相反,thnrs - no2表现出强烈的温度依赖性,在500 K时恢复时间达到峰值34.13 s。这些发现证明了ThNNRs的可调谐电子特性,并强调了其在纳米电子学和化学传感应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thallium Nitride Nanosensors for Selective Detection of CO2, CO, NO, and BF3 Gases: Insights from Ab Initio Molecular Dynamics
This study investigates the electronic properties of Thallium Nitride Nanoribbons (ThNNRs) in bare, pristine, and functionalized forms using density functional theory (DFT). The influence of nanoribbon width on structural stability and electronic characteristics is also examined. Bare ThNNRs exhibit metallic behavior with a zero bandgap, whereas pristine ThNNRs display semiconducting behavior, with their bandgap decreasing as the ribbon width increases. Functionalization with sensing molecules such as BF3, NO2, and CO2 significantly alters the electronic response. In particular, NO2‐ and CO2‐functionalized ThNNRs undergo a semiconductor‐to‐metallic phase transition with increasing width. Sensitivity analysis reveals that sensitivity decreases with temperature, indicating an inverse relationship. Recovery time analysis shows that ThNNRs–BF3 and ThNNRs–CO2 configurations are minimally affected by temperature. In contrast, ThNNRs–NO2 exhibits strong temperature dependence, with recovery times peaking at 34.13 s at 500 K. These findings demonstrate the tunable electronic properties of ThNNRs and underscore their potential in nanoelectronics and chemical sensing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信