{"title":"基于带隙和电流匹配优化的高效ZrS2/钙钛矿串联太阳能电池计算设计","authors":"Nabin Kumar Shaw, Basudeba Maharana, Avijit Kumar, Shyamal Chatterjee","doi":"10.1002/adts.202501325","DOIUrl":null,"url":null,"abstract":"Zirconium disulphide (ZrS<jats:sub>2</jats:sub>) homojunction solar cells are proposed as a sustainable top sub‐cell for effective perovskite tandem solar cell (TSC) for higher efficiency, and enhanced spectral utilization with a potential for low‐cost fabrication. The simulation shows that the two terminal (2T) ZrS<jats:sub>2</jats:sub> and CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>SnI<jats:sub>3</jats:sub> (Methylammonium tin iodide) based tandem solar cells may provide optimal efficiency up to 37.20%. SCAPS‐1D software has been utilized to investigate the dependence of various parameters such as thickness, doping densities, and defect densities on the photovoltaic properties of the standalone sub‐cells. Specifically, bandgap of the perovskite layers is varied between 1.18 and 1.36 eV to investigate its effect on the performance of the cell. The current matching criteria to be ≈ 19.33 mA cm<jats:sup>−2</jats:sup>, at each point of the investigation has been checked, to get the perfectly matched ZrS<jats:sub>2</jats:sub>/CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>SnI<jats:sub>3</jats:sub> tandem solar cell. The quantum efficiency (QE) versus wavelength curve confirms that the top ZrS<jats:sub>2</jats:sub> sub‐cell absorbs the shorter wavelength whereas the perovskite bottom sub‐cell absorbs the longer wavelength photons, promising a better utilization of most of the incident photons. This work provides a numerical justification for the experimental realization of 2T tandem solar cells with ZrS<jats:sub>2</jats:sub> as a top sub‐cell in perovskite TSCs for higher efficiencies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"93 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Design of High‐Efficiency ZrS2/Perovskite Tandem Solar Cell via Bandgap and Current Matching Optimization\",\"authors\":\"Nabin Kumar Shaw, Basudeba Maharana, Avijit Kumar, Shyamal Chatterjee\",\"doi\":\"10.1002/adts.202501325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zirconium disulphide (ZrS<jats:sub>2</jats:sub>) homojunction solar cells are proposed as a sustainable top sub‐cell for effective perovskite tandem solar cell (TSC) for higher efficiency, and enhanced spectral utilization with a potential for low‐cost fabrication. The simulation shows that the two terminal (2T) ZrS<jats:sub>2</jats:sub> and CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>SnI<jats:sub>3</jats:sub> (Methylammonium tin iodide) based tandem solar cells may provide optimal efficiency up to 37.20%. SCAPS‐1D software has been utilized to investigate the dependence of various parameters such as thickness, doping densities, and defect densities on the photovoltaic properties of the standalone sub‐cells. Specifically, bandgap of the perovskite layers is varied between 1.18 and 1.36 eV to investigate its effect on the performance of the cell. The current matching criteria to be ≈ 19.33 mA cm<jats:sup>−2</jats:sup>, at each point of the investigation has been checked, to get the perfectly matched ZrS<jats:sub>2</jats:sub>/CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>SnI<jats:sub>3</jats:sub> tandem solar cell. The quantum efficiency (QE) versus wavelength curve confirms that the top ZrS<jats:sub>2</jats:sub> sub‐cell absorbs the shorter wavelength whereas the perovskite bottom sub‐cell absorbs the longer wavelength photons, promising a better utilization of most of the incident photons. This work provides a numerical justification for the experimental realization of 2T tandem solar cells with ZrS<jats:sub>2</jats:sub> as a top sub‐cell in perovskite TSCs for higher efficiencies.\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adts.202501325\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202501325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
二硫化锆(ZrS2)同结太阳能电池被认为是有效钙钛矿串联太阳能电池(TSC)的一种可持续的顶部亚电池,具有更高的效率,增强的光谱利用率和低成本制造的潜力。仿真结果表明,双端(2T) ZrS2和CH3NH3SnI3(甲基碘化锡铵)基串联太阳能电池的效率最高可达37.20%。利用SCAPS - 1D软件研究了各种参数(如厚度、掺杂密度和缺陷密度)对独立子电池光伏性能的依赖关系。具体来说,钙钛矿层的带隙在1.18和1.36 eV之间变化,以研究其对电池性能的影响。在每个调查点的电流匹配标准为≈19.33 mA cm−2进行了检查,得到了完美匹配的ZrS2/CH3NH3SnI3串联太阳能电池。量子效率(QE) -波长曲线证实,顶部ZrS2子电池吸收较短波长的光子,而底部钙钛矿子电池吸收较长波长的光子,有望更好地利用大部分入射光子。这项工作为在钙钛矿tsc中以ZrS2作为顶亚电池的2T串联太阳能电池的实验实现提供了数值依据,以提高效率。
Computational Design of High‐Efficiency ZrS2/Perovskite Tandem Solar Cell via Bandgap and Current Matching Optimization
Zirconium disulphide (ZrS2) homojunction solar cells are proposed as a sustainable top sub‐cell for effective perovskite tandem solar cell (TSC) for higher efficiency, and enhanced spectral utilization with a potential for low‐cost fabrication. The simulation shows that the two terminal (2T) ZrS2 and CH3NH3SnI3 (Methylammonium tin iodide) based tandem solar cells may provide optimal efficiency up to 37.20%. SCAPS‐1D software has been utilized to investigate the dependence of various parameters such as thickness, doping densities, and defect densities on the photovoltaic properties of the standalone sub‐cells. Specifically, bandgap of the perovskite layers is varied between 1.18 and 1.36 eV to investigate its effect on the performance of the cell. The current matching criteria to be ≈ 19.33 mA cm−2, at each point of the investigation has been checked, to get the perfectly matched ZrS2/CH3NH3SnI3 tandem solar cell. The quantum efficiency (QE) versus wavelength curve confirms that the top ZrS2 sub‐cell absorbs the shorter wavelength whereas the perovskite bottom sub‐cell absorbs the longer wavelength photons, promising a better utilization of most of the incident photons. This work provides a numerical justification for the experimental realization of 2T tandem solar cells with ZrS2 as a top sub‐cell in perovskite TSCs for higher efficiencies.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics