预测农药蒸汽压力:官能团的力量

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mark Heezen, Manuel Alcami, Clemens Rauer, Freija De Vleeschouwer
{"title":"预测农药蒸汽压力:官能团的力量","authors":"Mark Heezen, Manuel Alcami, Clemens Rauer, Freija De Vleeschouwer","doi":"10.1039/d5cp01965f","DOIUrl":null,"url":null,"abstract":"Explainable machine learning can aid in deriving chemical rules which in combination with inverse molecular design methods can support humans to optimise classes of molecules such as pesticides. This study demonstrates that pesticide vapour pressures can be predicted (77.1% within one order of magnitude) using kernel ridge regression on quantum chemical molecular properties but the model lacks interpretability. However, insights (via Shapley additive explanations) can be gained when a framework of functional groups is employed instead. A functional group-based model (66.7%withinoneorderofmagnitude)revealsthataromatic compounds, sulfonic acid derivatives, and carboxylic acid derivatives influence the vapour pressure the most. SHAP value trends indicate a linear relationship between reduced vapour pressure and the frequency of functional groups. A provided list of functional group contributions enables molecular modifications to optimise pesticide vapour pressures.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"103 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Pesticide Vapour Pressures: The Power of Functional Groups\",\"authors\":\"Mark Heezen, Manuel Alcami, Clemens Rauer, Freija De Vleeschouwer\",\"doi\":\"10.1039/d5cp01965f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable machine learning can aid in deriving chemical rules which in combination with inverse molecular design methods can support humans to optimise classes of molecules such as pesticides. This study demonstrates that pesticide vapour pressures can be predicted (77.1% within one order of magnitude) using kernel ridge regression on quantum chemical molecular properties but the model lacks interpretability. However, insights (via Shapley additive explanations) can be gained when a framework of functional groups is employed instead. A functional group-based model (66.7%withinoneorderofmagnitude)revealsthataromatic compounds, sulfonic acid derivatives, and carboxylic acid derivatives influence the vapour pressure the most. SHAP value trends indicate a linear relationship between reduced vapour pressure and the frequency of functional groups. A provided list of functional group contributions enables molecular modifications to optimise pesticide vapour pressures.\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5cp01965f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01965f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

可解释的机器学习可以帮助推导化学规则,结合逆分子设计方法,可以支持人类优化分子类别,如杀虫剂。本研究表明,利用量子化学分子性质的核脊回归可以预测农药蒸气压(77.1%),但模型缺乏可解释性。然而,当使用功能群框架时,可以获得洞察力(通过Shapley加性解释)。基于官能团的模型(一个数量级内66.7%)表明芳香化合物、磺酸衍生物和羧酸衍生物对蒸汽压的影响最大。SHAP值趋势表明蒸气压的降低与官能团的出现频率呈线性关系。提供的官能团贡献列表使分子修饰能够优化农药蒸气压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Pesticide Vapour Pressures: The Power of Functional Groups
Explainable machine learning can aid in deriving chemical rules which in combination with inverse molecular design methods can support humans to optimise classes of molecules such as pesticides. This study demonstrates that pesticide vapour pressures can be predicted (77.1% within one order of magnitude) using kernel ridge regression on quantum chemical molecular properties but the model lacks interpretability. However, insights (via Shapley additive explanations) can be gained when a framework of functional groups is employed instead. A functional group-based model (66.7%withinoneorderofmagnitude)revealsthataromatic compounds, sulfonic acid derivatives, and carboxylic acid derivatives influence the vapour pressure the most. SHAP value trends indicate a linear relationship between reduced vapour pressure and the frequency of functional groups. A provided list of functional group contributions enables molecular modifications to optimise pesticide vapour pressures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信