{"title":"禽类胚胎干细胞的衍生。","authors":"Xi Chen,Zheng Guo,Xinyi Tong,Xizi Wang,Xugeng Liu,Hiroki Nagai,Ping Wu,Jiayi Lu,David Huss,Martin Tran,Carol Readhead,Christina Wu,Lin Cao,Yixin Huang,Zhaohan Zeng,Fan Feng,Nima Adhami,Sirjan Mor,Rusty Lansford,Cheng-Ming Chuong,Guojun Sheng,Carlos Lois,Qi-Long Ying","doi":"10.1038/s41587-025-02833-3","DOIUrl":null,"url":null,"abstract":"Germline-competent embryonic stem (ES) cells have been successfully derived from mice and rats, but not from other species. Here we report the development of culture conditions for deriving ES cells from chickens and seven other avian species. Chicken ES cells express core pluripotency markers and can differentiate into cells of all embryonic germ layers, as well as extra-embryonic lineages. Notably, chicken ES cells contribute to high rates of chimerism when injected into chicken embryos and give rise to germ cells both in vitro and in ovo, confirming their germline competence. In addition, we demonstrated that ES cell self-renewal pathways are conserved among avian species, allowing ES cells from multiple avian species to be established using optimized chicken ES cell culture conditions. The establishment of authentic avian ES cells lays the groundwork for future applications in genetic engineering and the conservation of avian biodiversity.","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"69 1","pages":""},"PeriodicalIF":41.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivation of embryonic stem cells across avian species.\",\"authors\":\"Xi Chen,Zheng Guo,Xinyi Tong,Xizi Wang,Xugeng Liu,Hiroki Nagai,Ping Wu,Jiayi Lu,David Huss,Martin Tran,Carol Readhead,Christina Wu,Lin Cao,Yixin Huang,Zhaohan Zeng,Fan Feng,Nima Adhami,Sirjan Mor,Rusty Lansford,Cheng-Ming Chuong,Guojun Sheng,Carlos Lois,Qi-Long Ying\",\"doi\":\"10.1038/s41587-025-02833-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germline-competent embryonic stem (ES) cells have been successfully derived from mice and rats, but not from other species. Here we report the development of culture conditions for deriving ES cells from chickens and seven other avian species. Chicken ES cells express core pluripotency markers and can differentiate into cells of all embryonic germ layers, as well as extra-embryonic lineages. Notably, chicken ES cells contribute to high rates of chimerism when injected into chicken embryos and give rise to germ cells both in vitro and in ovo, confirming their germline competence. In addition, we demonstrated that ES cell self-renewal pathways are conserved among avian species, allowing ES cells from multiple avian species to be established using optimized chicken ES cell culture conditions. The establishment of authentic avian ES cells lays the groundwork for future applications in genetic engineering and the conservation of avian biodiversity.\",\"PeriodicalId\":19084,\"journal\":{\"name\":\"Nature biotechnology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":41.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41587-025-02833-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02833-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Derivation of embryonic stem cells across avian species.
Germline-competent embryonic stem (ES) cells have been successfully derived from mice and rats, but not from other species. Here we report the development of culture conditions for deriving ES cells from chickens and seven other avian species. Chicken ES cells express core pluripotency markers and can differentiate into cells of all embryonic germ layers, as well as extra-embryonic lineages. Notably, chicken ES cells contribute to high rates of chimerism when injected into chicken embryos and give rise to germ cells both in vitro and in ovo, confirming their germline competence. In addition, we demonstrated that ES cell self-renewal pathways are conserved among avian species, allowing ES cells from multiple avian species to be established using optimized chicken ES cell culture conditions. The establishment of authentic avian ES cells lays the groundwork for future applications in genetic engineering and the conservation of avian biodiversity.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.