广义退化椭圆型偏微分方程的梯度正则性。

IF 1.6
Michael Strunk
{"title":"广义退化椭圆型偏微分方程的梯度正则性。","authors":"Michael Strunk","doi":"10.1007/s42985-025-00349-8","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we investigate the regularity of weak solutions  <math><mrow><mi>u</mi> <mo>:</mo> <mi>Ω</mi> <mo>→</mo> <mi>R</mi></mrow> </math> to elliptic equations of the type <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mtext>div</mtext> <mspace></mspace> <mi>∇</mi> <mi>F</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>D</mi> <mi>u</mi> <mo>)</mo> <mo>=</mo> <mi>f</mi> <mspace></mspace> <mtext>in</mtext> <mspace></mspace> <mi>Ω</mi> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> whose ellipticity degenerates in a fixed bounded and convex set  <math><mrow><mi>E</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> with  <math><mrow><mn>0</mn> <mo>∈</mo> <mtext>Int</mtext> <mspace></mspace> <mi>E</mi></mrow> </math> . Here,  <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> denotes a bounded domain, and  <math><mrow><mi>F</mi> <mo>:</mo> <mi>Ω</mi> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>→</mo> <msub><mi>R</mi> <mrow><mo>≥</mo> <mn>0</mn></mrow> </msub> </mrow> </math> is a function with the properties: for any  <math><mrow><mi>x</mi> <mo>∈</mo> <mi>Ω</mi></mrow> </math> , the mapping  <math><mrow><mi>ξ</mi> <mo>↦</mo> <mi>F</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ξ</mi> <mo>)</mo></mrow> </math> is regular outside <i>E</i> and vanishes entirely within this set. Additionally, we assume  <math><mrow><mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mrow><mi>n</mi> <mo>+</mo> <mi>σ</mi></mrow> </msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some  <math><mrow><mi>σ</mi> <mo>></mo> <mn>0</mn></mrow> </math> , representing an arbitrary datum. Our main result establishes the regularity <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>K</mi> <mrow><mo>(</mo> <mi>D</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>∈</mo> <msup><mi>C</mi> <mn>0</mn></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for any continuous function  <math><mrow><mi>K</mi> <mo>∈</mo> <msup><mi>C</mi> <mn>0</mn></msup> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>)</mo></mrow> </mrow> </math> vanishing on <i>E</i>.</p>","PeriodicalId":74818,"journal":{"name":"SN partial differential equations and applications","volume":"6 5","pages":"39"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476422/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gradient regularity for widely degenerate elliptic partial differential equations.\",\"authors\":\"Michael Strunk\",\"doi\":\"10.1007/s42985-025-00349-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we investigate the regularity of weak solutions  <math><mrow><mi>u</mi> <mo>:</mo> <mi>Ω</mi> <mo>→</mo> <mi>R</mi></mrow> </math> to elliptic equations of the type <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mtext>div</mtext> <mspace></mspace> <mi>∇</mi> <mi>F</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>D</mi> <mi>u</mi> <mo>)</mo> <mo>=</mo> <mi>f</mi> <mspace></mspace> <mtext>in</mtext> <mspace></mspace> <mi>Ω</mi> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> whose ellipticity degenerates in a fixed bounded and convex set  <math><mrow><mi>E</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> with  <math><mrow><mn>0</mn> <mo>∈</mo> <mtext>Int</mtext> <mspace></mspace> <mi>E</mi></mrow> </math> . Here,  <math><mrow><mi>Ω</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </mrow> </math> denotes a bounded domain, and  <math><mrow><mi>F</mi> <mo>:</mo> <mi>Ω</mi> <mo>×</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>→</mo> <msub><mi>R</mi> <mrow><mo>≥</mo> <mn>0</mn></mrow> </msub> </mrow> </math> is a function with the properties: for any  <math><mrow><mi>x</mi> <mo>∈</mo> <mi>Ω</mi></mrow> </math> , the mapping  <math><mrow><mi>ξ</mi> <mo>↦</mo> <mi>F</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>ξ</mi> <mo>)</mo></mrow> </math> is regular outside <i>E</i> and vanishes entirely within this set. Additionally, we assume  <math><mrow><mi>f</mi> <mo>∈</mo> <msup><mi>L</mi> <mrow><mi>n</mi> <mo>+</mo> <mi>σ</mi></mrow> </msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </math> for some  <math><mrow><mi>σ</mi> <mo>></mo> <mn>0</mn></mrow> </math> , representing an arbitrary datum. Our main result establishes the regularity <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mi>K</mi> <mrow><mo>(</mo> <mi>D</mi> <mi>u</mi> <mo>)</mo></mrow> <mo>∈</mo> <msup><mi>C</mi> <mn>0</mn></msup> <mrow><mo>(</mo> <mi>Ω</mi> <mo>)</mo></mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> for any continuous function  <math><mrow><mi>K</mi> <mo>∈</mo> <msup><mi>C</mi> <mn>0</mn></msup> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>)</mo></mrow> </mrow> </math> vanishing on <i>E</i>.</p>\",\"PeriodicalId\":74818,\"journal\":{\"name\":\"SN partial differential equations and applications\",\"volume\":\"6 5\",\"pages\":\"39\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12476422/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SN partial differential equations and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42985-025-00349-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SN partial differential equations and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42985-025-00349-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Ω中div∇F (x, du) = F型椭圆方程的弱解u: Ω→R的正则性,该类方程的椭圆性在固定有界凸集E∧R n中退化,且0∈Int E。其中Ω∧R n表示有界定义域,F: Ω × R n→R≥0是一个函数,它具有以下性质:对于任意x∈Ω,映射ξ∈F (x, ξ)在E之外是正则的,并且在这个集合内完全消失。另外,我们假设f∈ln + σ (Ω)对于某个σ > 0,表示任意的基准。我们的主要结果建立了任意连续函数K∈c0 (rn)消失于E上的规律性K (du)∈c0 (Ω)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gradient regularity for widely degenerate elliptic partial differential equations.

In this paper, we investigate the regularity of weak solutions  u : Ω R to elliptic equations of the type div F ( x , D u ) = f in Ω , whose ellipticity degenerates in a fixed bounded and convex set  E R n with  0 Int E . Here,  Ω R n denotes a bounded domain, and  F : Ω × R n R 0 is a function with the properties: for any  x Ω , the mapping  ξ F ( x , ξ ) is regular outside E and vanishes entirely within this set. Additionally, we assume  f L n + σ ( Ω ) for some  σ > 0 , representing an arbitrary datum. Our main result establishes the regularity K ( D u ) C 0 ( Ω ) for any continuous function  K C 0 ( R n ) vanishing on E.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信