{"title":"利用x光片进行小样本训练的预训练方法(PASTER):由胸部x光片和自由文本报告训练的多模态变压器。","authors":"Kai-Chieh Chen, Matthew Kuo, Chun-Ho Lee, Hao-Chun Liao, Dung-Jang Tsai, Shing-An Lin, Chih-Wei Hsiang, Cheng-Kuang Chang, Kai-Hsiung Ko, Yi-Chih Hsu, Wei-Chou Chang, Guo-Shu Huang, Wen-Hui Fang, Chin-Sheng Lin, Shih-Hua Lin, Yuan-Hao Chen, Yi-Jen Hung, Chien-Sung Tsai, Chin Lin","doi":"10.1007/s10916-025-02263-3","DOIUrl":null,"url":null,"abstract":"<p><p>While deep convolutional neural networks (DCNNs) have achieved remarkable performance in chest X-ray interpretation, their success typically depends on access to large-scale, expertly annotated datasets. However, collecting such data in real-world clinical settings can be difficult because of limited labeling resources, privacy concerns, and patient variability. In this study, we applied a multimodal Transformer pretrained on free-text reports and their paired CXRs to evaluate the effectiveness of this method in settings with limited labeled data. Our dataset consisted of more than 1 million CXRs, each accompanied by reports from board-certified radiologists and 31 structured labels. The results indicated that a linear model trained on embeddings from the pretrained model achieved AUCs of 0.907 and 0.903 on internal and external test sets, respectively, using only 128 cases and 384 controls; the results were comparable those of DenseNet trained on the entire dataset, whose AUCs were 0.908 and 0.903, respectively. Additionally, we demonstrated similar results by extending the application of this approach to a subset annotated with structured echocardiographic reports. Furthermore, this multimodal model exhibited excellent small sample learning capabilities when tested on external validation sets such as CheXpert and ChestX-ray14. This research significantly reduces the sample size necessary for future artificial intelligence advancements in CXR interpretation.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"120"},"PeriodicalIF":5.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pretraining Approach for Small-sample Training Employing Radiographs (PASTER): a Multimodal Transformer Trained by Chest Radiography and Free-text Reports.\",\"authors\":\"Kai-Chieh Chen, Matthew Kuo, Chun-Ho Lee, Hao-Chun Liao, Dung-Jang Tsai, Shing-An Lin, Chih-Wei Hsiang, Cheng-Kuang Chang, Kai-Hsiung Ko, Yi-Chih Hsu, Wei-Chou Chang, Guo-Shu Huang, Wen-Hui Fang, Chin-Sheng Lin, Shih-Hua Lin, Yuan-Hao Chen, Yi-Jen Hung, Chien-Sung Tsai, Chin Lin\",\"doi\":\"10.1007/s10916-025-02263-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While deep convolutional neural networks (DCNNs) have achieved remarkable performance in chest X-ray interpretation, their success typically depends on access to large-scale, expertly annotated datasets. However, collecting such data in real-world clinical settings can be difficult because of limited labeling resources, privacy concerns, and patient variability. In this study, we applied a multimodal Transformer pretrained on free-text reports and their paired CXRs to evaluate the effectiveness of this method in settings with limited labeled data. Our dataset consisted of more than 1 million CXRs, each accompanied by reports from board-certified radiologists and 31 structured labels. The results indicated that a linear model trained on embeddings from the pretrained model achieved AUCs of 0.907 and 0.903 on internal and external test sets, respectively, using only 128 cases and 384 controls; the results were comparable those of DenseNet trained on the entire dataset, whose AUCs were 0.908 and 0.903, respectively. Additionally, we demonstrated similar results by extending the application of this approach to a subset annotated with structured echocardiographic reports. Furthermore, this multimodal model exhibited excellent small sample learning capabilities when tested on external validation sets such as CheXpert and ChestX-ray14. This research significantly reduces the sample size necessary for future artificial intelligence advancements in CXR interpretation.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"120\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02263-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02263-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
A Pretraining Approach for Small-sample Training Employing Radiographs (PASTER): a Multimodal Transformer Trained by Chest Radiography and Free-text Reports.
While deep convolutional neural networks (DCNNs) have achieved remarkable performance in chest X-ray interpretation, their success typically depends on access to large-scale, expertly annotated datasets. However, collecting such data in real-world clinical settings can be difficult because of limited labeling resources, privacy concerns, and patient variability. In this study, we applied a multimodal Transformer pretrained on free-text reports and their paired CXRs to evaluate the effectiveness of this method in settings with limited labeled data. Our dataset consisted of more than 1 million CXRs, each accompanied by reports from board-certified radiologists and 31 structured labels. The results indicated that a linear model trained on embeddings from the pretrained model achieved AUCs of 0.907 and 0.903 on internal and external test sets, respectively, using only 128 cases and 384 controls; the results were comparable those of DenseNet trained on the entire dataset, whose AUCs were 0.908 and 0.903, respectively. Additionally, we demonstrated similar results by extending the application of this approach to a subset annotated with structured echocardiographic reports. Furthermore, this multimodal model exhibited excellent small sample learning capabilities when tested on external validation sets such as CheXpert and ChestX-ray14. This research significantly reduces the sample size necessary for future artificial intelligence advancements in CXR interpretation.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.