{"title":"胰高血糖素信号传导的共享机制通路:释放其治疗肥胖、代谢功能障碍相关的脂肪变性肝病和其他心肾代谢疾病的潜力。","authors":"Guy W Neff","doi":"10.1111/dom.70148","DOIUrl":null,"url":null,"abstract":"<p><p>Glucagon is a pancreatic peptide hormone whose receptor (GCGR) is expressed in the liver, kidney, and, to a lesser extent, various other tissues. Glucagon is well known as the counterpart to insulin in glucose homeostasis. However, recent evidence has revealed other potential roles of glucagon, which include the regulation of amino acid metabolism via a liver-pancreatic alpha cell axis, stimulation of lipolysis and mitochondrial fat oxidation in the liver (and possibly in other tissues), reduction of caloric intake, and an increase in energy expenditure (at least in animal models). These advances in basic science-together with clinical trials that found GCGR antagonists increased body weight, hepatic fat, and serum lipids in people with type 2 diabetes-are driving the development of GCGR-based agonists for the treatment of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and other cardio-kidney-metabolic diseases. Due to the hyperglycaemic effects of glucagon, these unimolecular compounds also incorporate moieties that activate the glucagon-like peptide-1 (GLP-1) receptor, which stimulates insulin secretion to lower blood glucose levels. In early clinical trials, several GCGR-based multi-agonists (mazdutide, survodutide [being developed by the sponsor of this review], retatrutide) demonstrated substantial efficacy for eliciting weight loss in people with obesity while improving liver health in those with MASLD. However, the physiological and molecular pathways modulated by chronic pharmacological activation of the GCGR in humans remain to be delineated, as do its potential risks. Thus, there is great interest in the ongoing phase 3 clinical trials of these compounds. As data for their safety and efficacy emerge, glucagon's role in energy regulation and lipid metabolism will become clearer, along with warranting a potential new therapeutic option for obesity and MASLD.</p>","PeriodicalId":158,"journal":{"name":"Diabetes, Obesity & Metabolism","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shared mechanistic pathways of glucagon signalling: Unlocking its potential for treating obesity, metabolic dysfunction-associated steatotic liver disease, and other cardio-kidney-metabolic conditions.\",\"authors\":\"Guy W Neff\",\"doi\":\"10.1111/dom.70148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucagon is a pancreatic peptide hormone whose receptor (GCGR) is expressed in the liver, kidney, and, to a lesser extent, various other tissues. Glucagon is well known as the counterpart to insulin in glucose homeostasis. However, recent evidence has revealed other potential roles of glucagon, which include the regulation of amino acid metabolism via a liver-pancreatic alpha cell axis, stimulation of lipolysis and mitochondrial fat oxidation in the liver (and possibly in other tissues), reduction of caloric intake, and an increase in energy expenditure (at least in animal models). These advances in basic science-together with clinical trials that found GCGR antagonists increased body weight, hepatic fat, and serum lipids in people with type 2 diabetes-are driving the development of GCGR-based agonists for the treatment of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and other cardio-kidney-metabolic diseases. Due to the hyperglycaemic effects of glucagon, these unimolecular compounds also incorporate moieties that activate the glucagon-like peptide-1 (GLP-1) receptor, which stimulates insulin secretion to lower blood glucose levels. In early clinical trials, several GCGR-based multi-agonists (mazdutide, survodutide [being developed by the sponsor of this review], retatrutide) demonstrated substantial efficacy for eliciting weight loss in people with obesity while improving liver health in those with MASLD. However, the physiological and molecular pathways modulated by chronic pharmacological activation of the GCGR in humans remain to be delineated, as do its potential risks. Thus, there is great interest in the ongoing phase 3 clinical trials of these compounds. As data for their safety and efficacy emerge, glucagon's role in energy regulation and lipid metabolism will become clearer, along with warranting a potential new therapeutic option for obesity and MASLD.</p>\",\"PeriodicalId\":158,\"journal\":{\"name\":\"Diabetes, Obesity & Metabolism\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes, Obesity & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/dom.70148\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes, Obesity & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dom.70148","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Shared mechanistic pathways of glucagon signalling: Unlocking its potential for treating obesity, metabolic dysfunction-associated steatotic liver disease, and other cardio-kidney-metabolic conditions.
Glucagon is a pancreatic peptide hormone whose receptor (GCGR) is expressed in the liver, kidney, and, to a lesser extent, various other tissues. Glucagon is well known as the counterpart to insulin in glucose homeostasis. However, recent evidence has revealed other potential roles of glucagon, which include the regulation of amino acid metabolism via a liver-pancreatic alpha cell axis, stimulation of lipolysis and mitochondrial fat oxidation in the liver (and possibly in other tissues), reduction of caloric intake, and an increase in energy expenditure (at least in animal models). These advances in basic science-together with clinical trials that found GCGR antagonists increased body weight, hepatic fat, and serum lipids in people with type 2 diabetes-are driving the development of GCGR-based agonists for the treatment of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD), and other cardio-kidney-metabolic diseases. Due to the hyperglycaemic effects of glucagon, these unimolecular compounds also incorporate moieties that activate the glucagon-like peptide-1 (GLP-1) receptor, which stimulates insulin secretion to lower blood glucose levels. In early clinical trials, several GCGR-based multi-agonists (mazdutide, survodutide [being developed by the sponsor of this review], retatrutide) demonstrated substantial efficacy for eliciting weight loss in people with obesity while improving liver health in those with MASLD. However, the physiological and molecular pathways modulated by chronic pharmacological activation of the GCGR in humans remain to be delineated, as do its potential risks. Thus, there is great interest in the ongoing phase 3 clinical trials of these compounds. As data for their safety and efficacy emerge, glucagon's role in energy regulation and lipid metabolism will become clearer, along with warranting a potential new therapeutic option for obesity and MASLD.
期刊介绍:
Diabetes, Obesity and Metabolism is primarily a journal of clinical and experimental pharmacology and therapeutics covering the interrelated areas of diabetes, obesity and metabolism. The journal prioritises high-quality original research that reports on the effects of new or existing therapies, including dietary, exercise and lifestyle (non-pharmacological) interventions, in any aspect of metabolic and endocrine disease, either in humans or animal and cellular systems. ‘Metabolism’ may relate to lipids, bone and drug metabolism, or broader aspects of endocrine dysfunction. Preclinical pharmacology, pharmacokinetic studies, meta-analyses and those addressing drug safety and tolerability are also highly suitable for publication in this journal. Original research may be published as a main paper or as a research letter.