固态核磁共振研究抗微生物肽magainin2在仿生脂质双分子层中的结构和动力学。

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahmad Saad, Jesus Raya, Burkhard Bechinger
{"title":"固态核磁共振研究抗微生物肽magainin2在仿生脂质双分子层中的结构和动力学。","authors":"Ahmad Saad, Jesus Raya, Burkhard Bechinger","doi":"10.1021/acs.biochem.5c00467","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present an atomic-level structural investigation of the magainin 2 antimicrobial peptide reconstituted in extended lipid bilayers that closely mimic the composition of bacterial membranes. Using state-of-the-art solid-state NMR spectroscopy, we show that within liquid-crystalline membranes the peptide exhibits site-specific motional regimes, which correlate with its amphipathic character. Peptide-lipid interactions are identified at the polar headgroup region consistent with an in-plane topology also observed by oriented <sup>15</sup>N solid-state NMR spectroscopy. While <sup>13</sup>C chemical shift analysis reveals α-helical conformations, the NMR line shapes indicate pronounced conformational heterogeneity, which can be explained by the existence of higher order arrangements along the membrane surface. A reduced degree of helicity is observed when the membrane is in the gel phase suggesting more superficial interactions of magainin 2. Notably, our NMR data show that membrane-associated magainin 2 can evolve into amyloid-like β-sheet structures, forming large peptide-lipid aggregates. This behavior occurs only in bacterial and not in mammalian membrane models, paving the way for a new understanding of the role of these supramolecular assemblies in host defense mechanisms, and highlighting a potential relationship between antimicrobial peptides and functional amyloid structures.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Dynamics of the Magainin 2 Antimicrobial Peptide in Biomimetic Lipid Bilayers by Solid-State NMR.\",\"authors\":\"Ahmad Saad, Jesus Raya, Burkhard Bechinger\",\"doi\":\"10.1021/acs.biochem.5c00467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we present an atomic-level structural investigation of the magainin 2 antimicrobial peptide reconstituted in extended lipid bilayers that closely mimic the composition of bacterial membranes. Using state-of-the-art solid-state NMR spectroscopy, we show that within liquid-crystalline membranes the peptide exhibits site-specific motional regimes, which correlate with its amphipathic character. Peptide-lipid interactions are identified at the polar headgroup region consistent with an in-plane topology also observed by oriented <sup>15</sup>N solid-state NMR spectroscopy. While <sup>13</sup>C chemical shift analysis reveals α-helical conformations, the NMR line shapes indicate pronounced conformational heterogeneity, which can be explained by the existence of higher order arrangements along the membrane surface. A reduced degree of helicity is observed when the membrane is in the gel phase suggesting more superficial interactions of magainin 2. Notably, our NMR data show that membrane-associated magainin 2 can evolve into amyloid-like β-sheet structures, forming large peptide-lipid aggregates. This behavior occurs only in bacterial and not in mammalian membrane models, paving the way for a new understanding of the role of these supramolecular assemblies in host defense mechanisms, and highlighting a potential relationship between antimicrobial peptides and functional amyloid structures.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.5c00467\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00467","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提出了一个原子水平的结构研究抗菌素2抗菌肽重组的扩展脂质双层,密切模仿细菌膜的组成。使用最先进的固态核磁共振波谱,我们表明,在液晶膜内,肽表现出位点特异性的运动机制,这与它的两性特性相关。多肽-脂质相互作用在极性头基区被识别,与定向15N固体核磁共振波谱观察到的面内拓扑一致。虽然13C化学位移分析显示α-螺旋构象,但核磁共振谱线形状显示明显的构象非均质性,这可以解释为沿膜表面存在高阶排列。当膜处于凝胶期时,观察到螺旋度降低,表明magainin - 2的表面相互作用更多。值得注意的是,我们的核磁共振数据显示,膜相关的magainin 2可以进化成淀粉样β-片结构,形成大的肽脂聚集体。这种行为只发生在细菌中,而不发生在哺乳动物膜模型中,这为新的理解这些超分子组装在宿主防御机制中的作用铺平了道路,并强调了抗菌肽和功能性淀粉样蛋白结构之间的潜在关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structure and Dynamics of the Magainin 2 Antimicrobial Peptide in Biomimetic Lipid Bilayers by Solid-State NMR.

In this study, we present an atomic-level structural investigation of the magainin 2 antimicrobial peptide reconstituted in extended lipid bilayers that closely mimic the composition of bacterial membranes. Using state-of-the-art solid-state NMR spectroscopy, we show that within liquid-crystalline membranes the peptide exhibits site-specific motional regimes, which correlate with its amphipathic character. Peptide-lipid interactions are identified at the polar headgroup region consistent with an in-plane topology also observed by oriented 15N solid-state NMR spectroscopy. While 13C chemical shift analysis reveals α-helical conformations, the NMR line shapes indicate pronounced conformational heterogeneity, which can be explained by the existence of higher order arrangements along the membrane surface. A reduced degree of helicity is observed when the membrane is in the gel phase suggesting more superficial interactions of magainin 2. Notably, our NMR data show that membrane-associated magainin 2 can evolve into amyloid-like β-sheet structures, forming large peptide-lipid aggregates. This behavior occurs only in bacterial and not in mammalian membrane models, paving the way for a new understanding of the role of these supramolecular assemblies in host defense mechanisms, and highlighting a potential relationship between antimicrobial peptides and functional amyloid structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信