Chathumini Samarawickrama, Sebastian Pöhlker, Philipp Eiden, Xiaobo Chen, Paul White, Patrick Keil and Ivan Cole
{"title":"液滴条件下对钢†的缓蚀剂性能评价","authors":"Chathumini Samarawickrama, Sebastian Pöhlker, Philipp Eiden, Xiaobo Chen, Paul White, Patrick Keil and Ivan Cole","doi":"10.1039/D5ME00050E","DOIUrl":null,"url":null,"abstract":"<p >Corrosion inhibitors play a crucial role in mitigating metal degradation, yet their performance varies significantly depending on environmental conditions and application methods. This study employs a high-throughput methodology utilising volume loss measurements <em>via</em> optical profilometry to assess corrosion inhibitor efficiency. A comparative analysis between the droplet-on-plate and full-immersion testing methods is conducted to evaluate their impacts on inhibitor performance using optical profilometry. The research delves into the chemistry of corrosion inhibitors specifically designed for droplet corrosion, where benzothiazole derivatives performed well in both environments, whereas thiazole derivatives exhibited weaker performance under droplet conditions, whilst focusing on how pH gradients evolve within a droplet over time and influence corrosion inhibitor effectiveness. Results indicate that localised pH variations significantly alter the adsorption behaviour and stability of corrosion inhibitors, affecting their protective capabilities. Furthermore, the interactions between corrosion inhibitors and oxide layers are explored, revealing that anodic inhibitors tend to accumulate around corrosion pits, suggesting a selective protection mechanism. Those findings provide critical insights into optimising corrosion inhibitor formulations and testing methodologies for sound corrosion assessments.</p>","PeriodicalId":91,"journal":{"name":"Molecular Systems Design & Engineering","volume":" 10","pages":" 880-897"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of corrosion inhibitor performance under droplet conditions on steel†\",\"authors\":\"Chathumini Samarawickrama, Sebastian Pöhlker, Philipp Eiden, Xiaobo Chen, Paul White, Patrick Keil and Ivan Cole\",\"doi\":\"10.1039/D5ME00050E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Corrosion inhibitors play a crucial role in mitigating metal degradation, yet their performance varies significantly depending on environmental conditions and application methods. This study employs a high-throughput methodology utilising volume loss measurements <em>via</em> optical profilometry to assess corrosion inhibitor efficiency. A comparative analysis between the droplet-on-plate and full-immersion testing methods is conducted to evaluate their impacts on inhibitor performance using optical profilometry. The research delves into the chemistry of corrosion inhibitors specifically designed for droplet corrosion, where benzothiazole derivatives performed well in both environments, whereas thiazole derivatives exhibited weaker performance under droplet conditions, whilst focusing on how pH gradients evolve within a droplet over time and influence corrosion inhibitor effectiveness. Results indicate that localised pH variations significantly alter the adsorption behaviour and stability of corrosion inhibitors, affecting their protective capabilities. Furthermore, the interactions between corrosion inhibitors and oxide layers are explored, revealing that anodic inhibitors tend to accumulate around corrosion pits, suggesting a selective protection mechanism. Those findings provide critical insights into optimising corrosion inhibitor formulations and testing methodologies for sound corrosion assessments.</p>\",\"PeriodicalId\":91,\"journal\":{\"name\":\"Molecular Systems Design & Engineering\",\"volume\":\" 10\",\"pages\":\" 880-897\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Systems Design & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00050e\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Systems Design & Engineering","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/me/d5me00050e","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Evaluation of corrosion inhibitor performance under droplet conditions on steel†
Corrosion inhibitors play a crucial role in mitigating metal degradation, yet their performance varies significantly depending on environmental conditions and application methods. This study employs a high-throughput methodology utilising volume loss measurements via optical profilometry to assess corrosion inhibitor efficiency. A comparative analysis between the droplet-on-plate and full-immersion testing methods is conducted to evaluate their impacts on inhibitor performance using optical profilometry. The research delves into the chemistry of corrosion inhibitors specifically designed for droplet corrosion, where benzothiazole derivatives performed well in both environments, whereas thiazole derivatives exhibited weaker performance under droplet conditions, whilst focusing on how pH gradients evolve within a droplet over time and influence corrosion inhibitor effectiveness. Results indicate that localised pH variations significantly alter the adsorption behaviour and stability of corrosion inhibitors, affecting their protective capabilities. Furthermore, the interactions between corrosion inhibitors and oxide layers are explored, revealing that anodic inhibitors tend to accumulate around corrosion pits, suggesting a selective protection mechanism. Those findings provide critical insights into optimising corrosion inhibitor formulations and testing methodologies for sound corrosion assessments.
期刊介绍:
Molecular Systems Design & Engineering provides a hub for cutting-edge research into how understanding of molecular properties, behaviour and interactions can be used to design and assemble better materials, systems, and processes to achieve specific functions. These may have applications of technological significance and help address global challenges.