CAT(0)-格的收敛与坍缩

IF 1.5 1区 数学 Q1 MATHEMATICS
Nicola Cavallucci , Andrea Sambusetti
{"title":"CAT(0)-格的收敛与坍缩","authors":"Nicola Cavallucci ,&nbsp;Andrea Sambusetti","doi":"10.1016/j.aim.2025.110555","DOIUrl":null,"url":null,"abstract":"<div><div>We study the theory of convergence for CAT(0)-lattices (that is groups Γ acting geometrically on proper, geodesically complete CAT(0)-spaces) and their quotients (CAT(0)-orbispaces). We describe some splitting and collapsing phenomena, explaining precisely how the actions can degenerate to a possibly non-discrete limit action, and prove a compactness theorem for the class of compact CAT(0)-homology orbifolds. Finally, as an application of this theory, we prove an isolation result for flat orbispaces and an entropy-pinching theorem.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"482 ","pages":"Article 110555"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence and collapsing of CAT(0)-lattices\",\"authors\":\"Nicola Cavallucci ,&nbsp;Andrea Sambusetti\",\"doi\":\"10.1016/j.aim.2025.110555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the theory of convergence for CAT(0)-lattices (that is groups Γ acting geometrically on proper, geodesically complete CAT(0)-spaces) and their quotients (CAT(0)-orbispaces). We describe some splitting and collapsing phenomena, explaining precisely how the actions can degenerate to a possibly non-discrete limit action, and prove a compactness theorem for the class of compact CAT(0)-homology orbifolds. Finally, as an application of this theory, we prove an isolation result for flat orbispaces and an entropy-pinching theorem.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"482 \",\"pages\":\"Article 110555\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825004530\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004530","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了CAT(0)-格(即群Γ几何作用于固有的、测地线完备的CAT(0)-空间)及其商(CAT(0)-轨道空间)的收敛性理论。我们描述了一些分裂和坍缩现象,精确地解释了这些作用如何退化为可能的非离散极限作用,并证明了紧CAT(0)-同调轨道的紧性定理。最后,作为该理论的一个应用,我们证明了平面轨道空间的一个隔离结果和一个熵捏定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence and collapsing of CAT(0)-lattices
We study the theory of convergence for CAT(0)-lattices (that is groups Γ acting geometrically on proper, geodesically complete CAT(0)-spaces) and their quotients (CAT(0)-orbispaces). We describe some splitting and collapsing phenomena, explaining precisely how the actions can degenerate to a possibly non-discrete limit action, and prove a compactness theorem for the class of compact CAT(0)-homology orbifolds. Finally, as an application of this theory, we prove an isolation result for flat orbispaces and an entropy-pinching theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信