mn掺杂对Co3O4尖晶石纳米颗粒CO氧化催化剂结构、形态、热及催化性能的影响

Daniel Manhouli Daawe , Cedric Karel Fonzeu Monguen , Stephane Kenmoe , Patrick Mountapmbeme Kouotou
{"title":"mn掺杂对Co3O4尖晶石纳米颗粒CO氧化催化剂结构、形态、热及催化性能的影响","authors":"Daniel Manhouli Daawe ,&nbsp;Cedric Karel Fonzeu Monguen ,&nbsp;Stephane Kenmoe ,&nbsp;Patrick Mountapmbeme Kouotou","doi":"10.1016/j.chphma.2025.05.005","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports the synthesis of three sets of high-performance manganese (Mn)-doped Co<sub>3</sub>O<sub>4</sub> porous nanocrystals (PNCs) (5%Mn@Co<sub>3</sub>O<sub>4</sub>, 10%Mn@Co<sub>3</sub>O<sub>4</sub>, and 15%Mn@Co<sub>3</sub>O<sub>4</sub>) using a simple chemical co-precipitation method. These catalysts were then used for the catalytic oxidation of carbon monoxide (CO). This investigation focused on the effects of Co<sup>2+</sup> or Co<sup>3+</sup> substitution by Mn<sup>2+</sup> or Mn<sup>3+</sup> within the Co<sub>3</sub>O<sub>4</sub> matrix on various properties of the PNCs, including their physicochemical characteristics, morphology, microstructure, reducibility, thermal stability, and their impact on the catalytic performance. Comprehensive characterization using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Hydrogen-Temperature Programmed Reduction and (H<sub>2</sub>-TPR), was employed to elucidate the factors responsible for effective CO oxidation. Compared to pure Mn<sub>3</sub>O<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>, the Mn@Co<sub>3</sub>O<sub>4</sub> PNCs catalysts exhibited a more controllable microstructure and better dispersion of the active phase. The 5%Mn@Co<sub>3</sub>O<sub>4</sub> catalyst demonstrated the highest activity, achieving 90% CO oxidation at 197 °C. This superior performance is attributed to its large specific surface area, excellent reduction capacity, and abundant oxygen species and vacancies. H<sub>2</sub>-TPR and XPS analyses provided further insights into the reaction mechanism. Density functional theory calculations showed that the formation of bulk oxygen vacancies is more favorable when Mn<sup>3+</sup> is substituted at the Co<sup>2+</sup> sites. Overall, the chemical coprecipitation method offers a straightforward and cost-effective approach for producing Mn@Co<sub>3</sub>O<sub>4</sub> catalysts suitable for CO abatement in exhaust and flue gases.</div></div>","PeriodicalId":100236,"journal":{"name":"ChemPhysMater","volume":"4 4","pages":"Pages 425-437"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Mn-doping effects on the structural, morphological, thermal, and catalytic properties of Co3O4 spinel nanoparticle catalysts for CO oxidation\",\"authors\":\"Daniel Manhouli Daawe ,&nbsp;Cedric Karel Fonzeu Monguen ,&nbsp;Stephane Kenmoe ,&nbsp;Patrick Mountapmbeme Kouotou\",\"doi\":\"10.1016/j.chphma.2025.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports the synthesis of three sets of high-performance manganese (Mn)-doped Co<sub>3</sub>O<sub>4</sub> porous nanocrystals (PNCs) (5%Mn@Co<sub>3</sub>O<sub>4</sub>, 10%Mn@Co<sub>3</sub>O<sub>4</sub>, and 15%Mn@Co<sub>3</sub>O<sub>4</sub>) using a simple chemical co-precipitation method. These catalysts were then used for the catalytic oxidation of carbon monoxide (CO). This investigation focused on the effects of Co<sup>2+</sup> or Co<sup>3+</sup> substitution by Mn<sup>2+</sup> or Mn<sup>3+</sup> within the Co<sub>3</sub>O<sub>4</sub> matrix on various properties of the PNCs, including their physicochemical characteristics, morphology, microstructure, reducibility, thermal stability, and their impact on the catalytic performance. Comprehensive characterization using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Hydrogen-Temperature Programmed Reduction and (H<sub>2</sub>-TPR), was employed to elucidate the factors responsible for effective CO oxidation. Compared to pure Mn<sub>3</sub>O<sub>4</sub> and Co<sub>3</sub>O<sub>4</sub>, the Mn@Co<sub>3</sub>O<sub>4</sub> PNCs catalysts exhibited a more controllable microstructure and better dispersion of the active phase. The 5%Mn@Co<sub>3</sub>O<sub>4</sub> catalyst demonstrated the highest activity, achieving 90% CO oxidation at 197 °C. This superior performance is attributed to its large specific surface area, excellent reduction capacity, and abundant oxygen species and vacancies. H<sub>2</sub>-TPR and XPS analyses provided further insights into the reaction mechanism. Density functional theory calculations showed that the formation of bulk oxygen vacancies is more favorable when Mn<sup>3+</sup> is substituted at the Co<sup>2+</sup> sites. Overall, the chemical coprecipitation method offers a straightforward and cost-effective approach for producing Mn@Co<sub>3</sub>O<sub>4</sub> catalysts suitable for CO abatement in exhaust and flue gases.</div></div>\",\"PeriodicalId\":100236,\"journal\":{\"name\":\"ChemPhysMater\",\"volume\":\"4 4\",\"pages\":\"Pages 425-437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemPhysMater\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772571525000361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhysMater","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772571525000361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用简单的化学共沉淀法合成了三组高性能掺杂锰(Mn)的Co3O4多孔纳米晶体(pnc) (5%Mn@Co3O4, 10%Mn@Co3O4和15%Mn@Co3O4)。然后将这些催化剂用于一氧化碳(CO)的催化氧化。本研究的重点是在Co3O4基体内用Mn2+或Mn3+取代Co2+或Co3+对pnc各种性能的影响,包括其物理化学特性、形貌、微观结构、还原性、热稳定性及其对催化性能的影响。采用x射线衍射(XRD)、扫描电镜(SEM)、Brunauer-Emmett-Teller (BET)分析、x射线光电子能谱(XPS)、氢-温度程序化还原和(H2-TPR)等综合表征技术,阐明了CO有效氧化的影响因素。与纯Mn3O4和Co3O4相比,Mn@Co3O4 pnc催化剂具有更可控的微观结构和更好的活性相分散性。5%Mn@Co3O4催化剂的活性最高,在197℃时可达到90%的CO氧化。这种优异的性能归因于其大的比表面积,优异的还原能力,丰富的氧和空位。H2-TPR和XPS分析进一步揭示了反应机理。密度泛函理论计算表明,在Co2+位上取代Mn3+更有利于形成大块氧空位。总的来说,化学共沉淀法为生产适用于废气和烟道气中CO减排的Mn@Co3O4催化剂提供了一种直接和经济有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Mn-doping effects on the structural, morphological, thermal, and catalytic properties of Co3O4 spinel nanoparticle catalysts for CO oxidation

Investigation of Mn-doping effects on the structural, morphological, thermal, and catalytic properties of Co3O4 spinel nanoparticle catalysts for CO oxidation
This study reports the synthesis of three sets of high-performance manganese (Mn)-doped Co3O4 porous nanocrystals (PNCs) (5%Mn@Co3O4, 10%Mn@Co3O4, and 15%Mn@Co3O4) using a simple chemical co-precipitation method. These catalysts were then used for the catalytic oxidation of carbon monoxide (CO). This investigation focused on the effects of Co2+ or Co3+ substitution by Mn2+ or Mn3+ within the Co3O4 matrix on various properties of the PNCs, including their physicochemical characteristics, morphology, microstructure, reducibility, thermal stability, and their impact on the catalytic performance. Comprehensive characterization using techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET) analysis, X-ray photoelectron spectroscopy (XPS), Hydrogen-Temperature Programmed Reduction and (H2-TPR), was employed to elucidate the factors responsible for effective CO oxidation. Compared to pure Mn3O4 and Co3O4, the Mn@Co3O4 PNCs catalysts exhibited a more controllable microstructure and better dispersion of the active phase. The 5%Mn@Co3O4 catalyst demonstrated the highest activity, achieving 90% CO oxidation at 197 °C. This superior performance is attributed to its large specific surface area, excellent reduction capacity, and abundant oxygen species and vacancies. H2-TPR and XPS analyses provided further insights into the reaction mechanism. Density functional theory calculations showed that the formation of bulk oxygen vacancies is more favorable when Mn3+ is substituted at the Co2+ sites. Overall, the chemical coprecipitation method offers a straightforward and cost-effective approach for producing Mn@Co3O4 catalysts suitable for CO abatement in exhaust and flue gases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信