Ryoichi Tatara, Daisuke Igarashi, Masanobu Nakayama, Tomooki Hosaka, Kazuki Ohishi, Izumi Umegaki, Jumpei G. Nakamura, Akihiro Koda, Hiroto Ohta, Rasmus Palm, Martin Månsson, Eun Jeong Kim, Kei Kubota, Jun Sugiyama, Shinichi Komaba
{"title":"再论LixCoO2和NaxCoO2的离子动力学","authors":"Ryoichi Tatara, Daisuke Igarashi, Masanobu Nakayama, Tomooki Hosaka, Kazuki Ohishi, Izumi Umegaki, Jumpei G. Nakamura, Akihiro Koda, Hiroto Ohta, Rasmus Palm, Martin Månsson, Eun Jeong Kim, Kei Kubota, Jun Sugiyama, Shinichi Komaba","doi":"10.1039/d5sc03394b","DOIUrl":null,"url":null,"abstract":"Layered oxides (AMO<small><sub>2</sub></small>, where A = Li or Na and M = transition metal) are essential positive electrode materials for lithium- and sodium-ion batteries. A fundamental question in ion transport is whether Li<small><sup>+</sup></small> or Na<small><sup>+</sup></small> diffuses faster in these materials; however, distinguishing intrinsic diffusion properties from the effects of particle size and electrode composition is challenging. Using <em>operando</em> muon spin spectroscopy and molecular dynamics simulations, we determined the Li<small><sup>+</sup></small> and Na<small><sup>+</sup></small> self-diffusion coefficients in O3-Li<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, O3-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, and P2-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>. Our findings revealed that Na<small><sup>+</sup></small> diffusion is higher in the P2-type structure than in the O3-type structure primarily due to weaker electrostatic interactions. In the O3-type structure, Li<small><sup>+</sup></small> diffuses faster than Na<small><sup>+</sup></small>, whose larger ionic size hinders mobility. These insights clarify the ion transport mechanisms and advance the design of next-generation battery materials.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"31 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the ion dynamics in LixCoO2 and NaxCoO2\",\"authors\":\"Ryoichi Tatara, Daisuke Igarashi, Masanobu Nakayama, Tomooki Hosaka, Kazuki Ohishi, Izumi Umegaki, Jumpei G. Nakamura, Akihiro Koda, Hiroto Ohta, Rasmus Palm, Martin Månsson, Eun Jeong Kim, Kei Kubota, Jun Sugiyama, Shinichi Komaba\",\"doi\":\"10.1039/d5sc03394b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered oxides (AMO<small><sub>2</sub></small>, where A = Li or Na and M = transition metal) are essential positive electrode materials for lithium- and sodium-ion batteries. A fundamental question in ion transport is whether Li<small><sup>+</sup></small> or Na<small><sup>+</sup></small> diffuses faster in these materials; however, distinguishing intrinsic diffusion properties from the effects of particle size and electrode composition is challenging. Using <em>operando</em> muon spin spectroscopy and molecular dynamics simulations, we determined the Li<small><sup>+</sup></small> and Na<small><sup>+</sup></small> self-diffusion coefficients in O3-Li<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, O3-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>, and P2-Na<small><sub><em>x</em></sub></small>CoO<small><sub>2</sub></small>. Our findings revealed that Na<small><sup>+</sup></small> diffusion is higher in the P2-type structure than in the O3-type structure primarily due to weaker electrostatic interactions. In the O3-type structure, Li<small><sup>+</sup></small> diffuses faster than Na<small><sup>+</sup></small>, whose larger ionic size hinders mobility. These insights clarify the ion transport mechanisms and advance the design of next-generation battery materials.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc03394b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc03394b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
层状氧化物(AMO2,其中A = Li或Na, M =过渡金属)是锂离子和钠离子电池必不可少的正极材料。离子输运的一个基本问题是Li+和Na+在这些材料中扩散得更快;然而,从颗粒大小和电极组成的影响中区分本然扩散特性是具有挑战性的。利用操作子自旋光谱和分子动力学模拟,测定了O3-LixCoO2、O3-NaxCoO2和P2-NaxCoO2中Li+和Na+的自扩散系数。我们的研究结果表明,在p2型结构中Na+的扩散比在o3型结构中更高,这主要是由于较弱的静电相互作用。在o3型结构中,Li+的扩散速度比Na+快,而Na+的离子尺寸较大阻碍了迁移率。这些见解阐明了离子传输机制,并推动了下一代电池材料的设计。
Revisiting the ion dynamics in LixCoO2 and NaxCoO2
Layered oxides (AMO2, where A = Li or Na and M = transition metal) are essential positive electrode materials for lithium- and sodium-ion batteries. A fundamental question in ion transport is whether Li+ or Na+ diffuses faster in these materials; however, distinguishing intrinsic diffusion properties from the effects of particle size and electrode composition is challenging. Using operando muon spin spectroscopy and molecular dynamics simulations, we determined the Li+ and Na+ self-diffusion coefficients in O3-LixCoO2, O3-NaxCoO2, and P2-NaxCoO2. Our findings revealed that Na+ diffusion is higher in the P2-type structure than in the O3-type structure primarily due to weaker electrostatic interactions. In the O3-type structure, Li+ diffuses faster than Na+, whose larger ionic size hinders mobility. These insights clarify the ion transport mechanisms and advance the design of next-generation battery materials.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.