利用陆地生态系统碳循环模拟器揭示太阳诱导的叶绿素荧光与总初级生产力的站点依赖关系

IF 11.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Haoran Liu, Zoe Amie Pierrat, Hamid Dashti, Min Chen
{"title":"利用陆地生态系统碳循环模拟器揭示太阳诱导的叶绿素荧光与总初级生产力的站点依赖关系","authors":"Haoran Liu, Zoe Amie Pierrat, Hamid Dashti, Min Chen","doi":"10.1016/j.rse.2025.115052","DOIUrl":null,"url":null,"abstract":"Solar-induced fluorescence (SIF), a small light signal emitted during the photosynthetic process, is a powerful tool for tracking gross primary productivity (GPP) across scales, particularly in evergreen needleleaf forests, which are traditionally challenging to monitor with remote sensing. Terrestrial biosphere models (TBMs) that incorporate a SIF module can help address the spatiotemporal limitations of field and satellite observations and explain variations in the SIF-GPP relationship across different temporal scales and ecosystems. In this study, we developed TECs-SIF, a TBM that integrates the spectral invariant property-based radiative transfer model across leaf and canopy scales to simultaneously simulate canopy SIF emissions and GPP and investigate how the SIF-GPP relationship varies across forest ecosystems. We calibrated and validated TECs-SIF using data from three evergreen needleleaf forest and one deciduous broadleaf forest AmeriFlux sites: Southern Old Black Spruce (CA-Obs), Delta Junction (US-xDJ), Niwot Ridge Forest (US-NR1), and University of Michigan Biological Station AmeriFlux site (US-UMB). Our results show that TECs-SIF as a promising tool that accurately simulates SIF and GPP across various temporal scales (Hourly: SIF: R<sup>2</sup> = 0.48–0.87, Root Mean Squared Error (RMSE) = 0.03–0.12 W/m<sup>2</sup>/μm/sr; GPP: R<sup>2</sup> = 0.60–0.79, RMSE = 1.82–5.31 μmol/m<sup>2</sup>/s; Daily: SIF: R<sup>2</sup> = 0.64–0.91, RMSE = 0.02–0.09 W/m<sup>2</sup>/μm/sr; GPP: R<sup>2</sup> = 0.89–0.97, RMSE = 0.51–2.05 μmol/m<sup>2</sup>/s), captures nonlinear relationships at hourly intervals, and linear trends at daily and monthly scales. Meanwhile, SIF-GPP relationship is site-dependent across temporal scales, influenced by canopy structure (e.g., CI) and leaf traits.","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"94 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unrevealing site-dependent relationship between solar-induced chlorophyll fluorescence and gross primary productivity using the terrestrial ecosystem carbon cycle simulator\",\"authors\":\"Haoran Liu, Zoe Amie Pierrat, Hamid Dashti, Min Chen\",\"doi\":\"10.1016/j.rse.2025.115052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-induced fluorescence (SIF), a small light signal emitted during the photosynthetic process, is a powerful tool for tracking gross primary productivity (GPP) across scales, particularly in evergreen needleleaf forests, which are traditionally challenging to monitor with remote sensing. Terrestrial biosphere models (TBMs) that incorporate a SIF module can help address the spatiotemporal limitations of field and satellite observations and explain variations in the SIF-GPP relationship across different temporal scales and ecosystems. In this study, we developed TECs-SIF, a TBM that integrates the spectral invariant property-based radiative transfer model across leaf and canopy scales to simultaneously simulate canopy SIF emissions and GPP and investigate how the SIF-GPP relationship varies across forest ecosystems. We calibrated and validated TECs-SIF using data from three evergreen needleleaf forest and one deciduous broadleaf forest AmeriFlux sites: Southern Old Black Spruce (CA-Obs), Delta Junction (US-xDJ), Niwot Ridge Forest (US-NR1), and University of Michigan Biological Station AmeriFlux site (US-UMB). Our results show that TECs-SIF as a promising tool that accurately simulates SIF and GPP across various temporal scales (Hourly: SIF: R<sup>2</sup> = 0.48–0.87, Root Mean Squared Error (RMSE) = 0.03–0.12 W/m<sup>2</sup>/μm/sr; GPP: R<sup>2</sup> = 0.60–0.79, RMSE = 1.82–5.31 μmol/m<sup>2</sup>/s; Daily: SIF: R<sup>2</sup> = 0.64–0.91, RMSE = 0.02–0.09 W/m<sup>2</sup>/μm/sr; GPP: R<sup>2</sup> = 0.89–0.97, RMSE = 0.51–2.05 μmol/m<sup>2</sup>/s), captures nonlinear relationships at hourly intervals, and linear trends at daily and monthly scales. Meanwhile, SIF-GPP relationship is site-dependent across temporal scales, influenced by canopy structure (e.g., CI) and leaf traits.\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.rse.2025.115052\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.rse.2025.115052","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

太阳诱导荧光(SIF)是光合作用过程中发出的一种小光信号,是一种跨尺度跟踪总初级生产力(GPP)的有力工具,特别是在常绿针叶林中,这在传统上是遥感监测的挑战。包含SIF模块的陆地生物圈模型(tbm)有助于解决野外和卫星观测的时空局限性,并解释SIF- gpp关系在不同时间尺度和生态系统中的变化。在这项研究中,我们开发了tec -SIF,这是一个集成了基于光谱不变属性的跨叶和冠层尺度辐射转移模型的TBM,可以同时模拟冠层SIF排放和GPP,并研究SIF-GPP在森林生态系统中的变化关系。我们使用三个常绿针叶林和一个落叶阔叶林的数据校准和验证了tec - sif:南方老黑云杉(CA-Obs)、三角洲结(US-xDJ)、Niwot Ridge森林(US-NR1)和密歇根大学生物站AmeriFlux站点(US-UMB)。研究结果表明,tec -SIF是一种很有前景的工具,可以准确模拟不同时间尺度的SIF和GPP(小时:SIF: R2 = 0.48-0.87,均方根误差(RMSE) = 0.03-0.12 W/m2/μm/sr;GPP: R2 = 0.60 ~ 0.79, RMSE = 1.82 ~ 5.31 μmol/m2/s;日报:SIF: R2 = 0.64 - -0.91, RMSE = 0.02 - -0.09 W / m2 /μm / sr;GPP: R2 = 0.89 ~ 0.97, RMSE = 0.51 ~ 2.05 μmol/m2/s),在小时尺度上呈现非线性关系,在日尺度和月尺度上呈现线性趋势。同时,SIF-GPP关系在时间尺度上具有站点依赖性,受冠层结构(如CI)和叶片性状的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unrevealing site-dependent relationship between solar-induced chlorophyll fluorescence and gross primary productivity using the terrestrial ecosystem carbon cycle simulator
Solar-induced fluorescence (SIF), a small light signal emitted during the photosynthetic process, is a powerful tool for tracking gross primary productivity (GPP) across scales, particularly in evergreen needleleaf forests, which are traditionally challenging to monitor with remote sensing. Terrestrial biosphere models (TBMs) that incorporate a SIF module can help address the spatiotemporal limitations of field and satellite observations and explain variations in the SIF-GPP relationship across different temporal scales and ecosystems. In this study, we developed TECs-SIF, a TBM that integrates the spectral invariant property-based radiative transfer model across leaf and canopy scales to simultaneously simulate canopy SIF emissions and GPP and investigate how the SIF-GPP relationship varies across forest ecosystems. We calibrated and validated TECs-SIF using data from three evergreen needleleaf forest and one deciduous broadleaf forest AmeriFlux sites: Southern Old Black Spruce (CA-Obs), Delta Junction (US-xDJ), Niwot Ridge Forest (US-NR1), and University of Michigan Biological Station AmeriFlux site (US-UMB). Our results show that TECs-SIF as a promising tool that accurately simulates SIF and GPP across various temporal scales (Hourly: SIF: R2 = 0.48–0.87, Root Mean Squared Error (RMSE) = 0.03–0.12 W/m2/μm/sr; GPP: R2 = 0.60–0.79, RMSE = 1.82–5.31 μmol/m2/s; Daily: SIF: R2 = 0.64–0.91, RMSE = 0.02–0.09 W/m2/μm/sr; GPP: R2 = 0.89–0.97, RMSE = 0.51–2.05 μmol/m2/s), captures nonlinear relationships at hourly intervals, and linear trends at daily and monthly scales. Meanwhile, SIF-GPP relationship is site-dependent across temporal scales, influenced by canopy structure (e.g., CI) and leaf traits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信