Shuyao Lin , Zhuo Chen , Rebecca Janknecht , Zaoli Zhang , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná , Davide G. Sangiovanni
{"title":"机器学习预测难熔二硼化物中依赖于取向和模式的断裂","authors":"Shuyao Lin , Zhuo Chen , Rebecca Janknecht , Zaoli Zhang , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná , Davide G. Sangiovanni","doi":"10.1016/j.actamat.2025.121568","DOIUrl":null,"url":null,"abstract":"<div><div>Fracture toughness (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Ic</mi></mrow></msub></math></span>) and fracture strength (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>) are key criteria in the selection and design of reliable ceramics. However, their experimental characterization remains challenging—especially for ceramic thin films, where size and interfacial effects hinder accurate and reproducible measurements. Here, machine-learning interatomic potentials (MLIPs) trained on <em>ab initio</em> datasets of single crystal models deformed up to fracture are used to characterize transgranular cleavage in pre-cracked ceramic diboride TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (TM = Ti, Zr, Hf) lattices through stress intensity factor (<span><math><mi>K</mi></math></span>)-controlled loading. Mode-I simulations performed across distinct crack geometries show that fracture is primarily driven by straight crack extension along the original plane. The corresponding macroscale fracture-initiation properties (<span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>Ic</mi></mrow></msub><mo>≈</mo><mn>1</mn><mo>.</mo><mn>7</mn></mrow></math></span>–<span><math><mrow><mn>2</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>MPa</mi><mi>⋅</mi><msqrt><mrow><mtext>m</mtext></mrow></msqrt></mrow></math></span>, <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>≈</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>–<span><math><mrow><mn>2</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>GPa</mi></mrow></math></span>) are extrapolated using scaling laws previously established for monocrystal ceramics. Considering TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as a representative system, additional simulations explore loading conditions ranging from pure Mode-I (opening) to Mode-II (sliding). TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> models containing prismatic cracks exhibit their lowest fracture resistance under mixed-mode conditions, where the crack deflects onto pyramidal planes—as confirmed by nanoindentation tests on TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(0001) thin films. This study establishes <span><math><mi>K</mi></math></span>-controlled, MLIP-based simulations as predictive tools for orientation- and mode-dependent fracture in ceramics.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"301 ","pages":"Article 121568"},"PeriodicalIF":9.3000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine-learning potentials predict orientation- and mode-dependent fracture in refractory diborides\",\"authors\":\"Shuyao Lin , Zhuo Chen , Rebecca Janknecht , Zaoli Zhang , Lars Hultman , Paul H. Mayrhofer , Nikola Koutná , Davide G. Sangiovanni\",\"doi\":\"10.1016/j.actamat.2025.121568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fracture toughness (<span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>Ic</mi></mrow></msub></math></span>) and fracture strength (<span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span>) are key criteria in the selection and design of reliable ceramics. However, their experimental characterization remains challenging—especially for ceramic thin films, where size and interfacial effects hinder accurate and reproducible measurements. Here, machine-learning interatomic potentials (MLIPs) trained on <em>ab initio</em> datasets of single crystal models deformed up to fracture are used to characterize transgranular cleavage in pre-cracked ceramic diboride TMB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (TM = Ti, Zr, Hf) lattices through stress intensity factor (<span><math><mi>K</mi></math></span>)-controlled loading. Mode-I simulations performed across distinct crack geometries show that fracture is primarily driven by straight crack extension along the original plane. The corresponding macroscale fracture-initiation properties (<span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>Ic</mi></mrow></msub><mo>≈</mo><mn>1</mn><mo>.</mo><mn>7</mn></mrow></math></span>–<span><math><mrow><mn>2</mn><mo>.</mo><mn>9</mn><mspace></mspace><mi>MPa</mi><mi>⋅</mi><msqrt><mrow><mtext>m</mtext></mrow></msqrt></mrow></math></span>, <span><math><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo>≈</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>–<span><math><mrow><mn>2</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>GPa</mi></mrow></math></span>) are extrapolated using scaling laws previously established for monocrystal ceramics. Considering TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> as a representative system, additional simulations explore loading conditions ranging from pure Mode-I (opening) to Mode-II (sliding). TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> models containing prismatic cracks exhibit their lowest fracture resistance under mixed-mode conditions, where the crack deflects onto pyramidal planes—as confirmed by nanoindentation tests on TiB<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>(0001) thin films. This study establishes <span><math><mi>K</mi></math></span>-controlled, MLIP-based simulations as predictive tools for orientation- and mode-dependent fracture in ceramics.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"301 \",\"pages\":\"Article 121568\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359645425008547\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425008547","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Machine-learning potentials predict orientation- and mode-dependent fracture in refractory diborides
Fracture toughness () and fracture strength () are key criteria in the selection and design of reliable ceramics. However, their experimental characterization remains challenging—especially for ceramic thin films, where size and interfacial effects hinder accurate and reproducible measurements. Here, machine-learning interatomic potentials (MLIPs) trained on ab initio datasets of single crystal models deformed up to fracture are used to characterize transgranular cleavage in pre-cracked ceramic diboride TMB (TM = Ti, Zr, Hf) lattices through stress intensity factor ()-controlled loading. Mode-I simulations performed across distinct crack geometries show that fracture is primarily driven by straight crack extension along the original plane. The corresponding macroscale fracture-initiation properties (–, –) are extrapolated using scaling laws previously established for monocrystal ceramics. Considering TiB as a representative system, additional simulations explore loading conditions ranging from pure Mode-I (opening) to Mode-II (sliding). TiB models containing prismatic cracks exhibit their lowest fracture resistance under mixed-mode conditions, where the crack deflects onto pyramidal planes—as confirmed by nanoindentation tests on TiB(0001) thin films. This study establishes -controlled, MLIP-based simulations as predictive tools for orientation- and mode-dependent fracture in ceramics.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.