持久定向标志拉普拉斯。

IF 1.4 Q2 MATHEMATICS, APPLIED
Benjamin Jones, Guo-Wei Wei
{"title":"持久定向标志拉普拉斯。","authors":"Benjamin Jones, Guo-Wei Wei","doi":"10.3934/fods.2024048","DOIUrl":null,"url":null,"abstract":"<p><p>Topological data analysis (TDA) has had enormous success in science and engineering in the past decade. Persistent topological Laplacians (PTLs) overcome some limitations of persistent homology, a key technique in TDA, and provide substantial insight to the behavior of various geometric and topological objects. This work extends PTLs to directed flag complexes, which are an exciting generalization to flag complexes, also known as clique complexes, that arise naturally in many situations. We introduce the directed flag Laplacian and show that the proposed persistent directed flag Laplacian (PDFL) is a distinct way of analyzing these flag complexes. Example calculations are provided to demonstrate the potential of the proposed PDFL in real world applications.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"7 3","pages":"737-758"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463187/pdf/","citationCount":"0","resultStr":"{\"title\":\"PERSISTENT DIRECTED FLAG LAPLACIAN.\",\"authors\":\"Benjamin Jones, Guo-Wei Wei\",\"doi\":\"10.3934/fods.2024048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Topological data analysis (TDA) has had enormous success in science and engineering in the past decade. Persistent topological Laplacians (PTLs) overcome some limitations of persistent homology, a key technique in TDA, and provide substantial insight to the behavior of various geometric and topological objects. This work extends PTLs to directed flag complexes, which are an exciting generalization to flag complexes, also known as clique complexes, that arise naturally in many situations. We introduce the directed flag Laplacian and show that the proposed persistent directed flag Laplacian (PDFL) is a distinct way of analyzing these flag complexes. Example calculations are provided to demonstrate the potential of the proposed PDFL in real world applications.</p>\",\"PeriodicalId\":73054,\"journal\":{\"name\":\"Foundations of data science (Springfield, Mo.)\",\"volume\":\"7 3\",\"pages\":\"737-758\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations of data science (Springfield, Mo.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/fods.2024048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2024048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

拓扑数据分析(TDA)在过去的十年里在科学和工程领域取得了巨大的成功。持久拓扑拉普拉斯算子(ptl)克服了持久同调(Persistent homology, TDA中的一项关键技术)的一些局限性,并对各种几何和拓扑对象的行为提供了实质性的认识。这项工作将ptl扩展到定向标志复合物,这是对标志复合物的一个令人兴奋的推广,也被称为团复合物,在许多情况下自然出现。我们引入了有向标志拉普拉斯算子,并证明了所提出的持久有向标志拉普拉斯算子是分析这些标志复合物的一种独特的方法。举例计算证明了所提出的PDFL在实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERSISTENT DIRECTED FLAG LAPLACIAN.

Topological data analysis (TDA) has had enormous success in science and engineering in the past decade. Persistent topological Laplacians (PTLs) overcome some limitations of persistent homology, a key technique in TDA, and provide substantial insight to the behavior of various geometric and topological objects. This work extends PTLs to directed flag complexes, which are an exciting generalization to flag complexes, also known as clique complexes, that arise naturally in many situations. We introduce the directed flag Laplacian and show that the proposed persistent directed flag Laplacian (PDFL) is a distinct way of analyzing these flag complexes. Example calculations are provided to demonstrate the potential of the proposed PDFL in real world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信