Andrew N Jayarajah, Angela Atinga, Linda Probyn, Thiru Sivakumaran, Monique Christakis, Anastasia Oikonomou
{"title":"基于x射线的人工智能筛查工具提高了临床环境中骨密度降低的早期检测。","authors":"Andrew N Jayarajah, Angela Atinga, Linda Probyn, Thiru Sivakumaran, Monique Christakis, Anastasia Oikonomou","doi":"10.1177/08465371251380240","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Osteoporosis is an under-screened musculoskeletal disorder that results in diminished quality of life and significant burden to the healthcare system. We aimed to evaluate the ability of Rho, an artificial intelligence (AI) tool, to prospectively identify patients at-risk for low bone mineral density (BMD) from standard x-rays, its adoption rate by radiologists, and acceptance by primary care providers (PCPs).</p><p><strong>Methods: </strong>Patients ≥50 years were recruited when undergoing an x-ray of a Rho-eligible body part for any clinical indication. Questionnaires were completed at baseline and 6-month follow-up, and PCPs of \"Rho-Positive\" patients (those likely to have low BMD) were asked for feedback. Positive predictive value (PPV) was calculated in patients who returned within 6 months for a DXA.</p><p><strong>Results: </strong>Of 1145 patients consented, 987 had x-rays screened by Rho, and 655 were flagged as Rho-Positive. Radiologists included this finding in 524 (80%) of reports. Of all Rho-Positive patients, 125 had a DXA within 6 months; Rho had a 74% PPV for DXA T-Score <-1. From 51 PCP responses, 78% found Rho beneficial. Of 389 patients with follow-up questionnaire data, a greater proportion of Rho-Positive versus -negative patients had discussed bone health with their PCP since study start (36% vs 18%, <i>P</i> < .001), or were newly diagnosed with osteoporosis (11% vs 5%; <i>P</i> = .03).</p><p><strong>Conclusion: </strong>By identifying patients at-risk of low BMD, with acceptability of reporting by radiologists and generally positive feedback from PCPs, Rho has the potential to improve low screening rates for osteoporosis by leveraging existing x-ray data.</p>","PeriodicalId":55290,"journal":{"name":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","volume":" ","pages":"8465371251380240"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI Screening Tool Based on X-Rays Improves Early Detection of Decreased Bone Density in a Clinical Setting.\",\"authors\":\"Andrew N Jayarajah, Angela Atinga, Linda Probyn, Thiru Sivakumaran, Monique Christakis, Anastasia Oikonomou\",\"doi\":\"10.1177/08465371251380240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Osteoporosis is an under-screened musculoskeletal disorder that results in diminished quality of life and significant burden to the healthcare system. We aimed to evaluate the ability of Rho, an artificial intelligence (AI) tool, to prospectively identify patients at-risk for low bone mineral density (BMD) from standard x-rays, its adoption rate by radiologists, and acceptance by primary care providers (PCPs).</p><p><strong>Methods: </strong>Patients ≥50 years were recruited when undergoing an x-ray of a Rho-eligible body part for any clinical indication. Questionnaires were completed at baseline and 6-month follow-up, and PCPs of \\\"Rho-Positive\\\" patients (those likely to have low BMD) were asked for feedback. Positive predictive value (PPV) was calculated in patients who returned within 6 months for a DXA.</p><p><strong>Results: </strong>Of 1145 patients consented, 987 had x-rays screened by Rho, and 655 were flagged as Rho-Positive. Radiologists included this finding in 524 (80%) of reports. Of all Rho-Positive patients, 125 had a DXA within 6 months; Rho had a 74% PPV for DXA T-Score <-1. From 51 PCP responses, 78% found Rho beneficial. Of 389 patients with follow-up questionnaire data, a greater proportion of Rho-Positive versus -negative patients had discussed bone health with their PCP since study start (36% vs 18%, <i>P</i> < .001), or were newly diagnosed with osteoporosis (11% vs 5%; <i>P</i> = .03).</p><p><strong>Conclusion: </strong>By identifying patients at-risk of low BMD, with acceptability of reporting by radiologists and generally positive feedback from PCPs, Rho has the potential to improve low screening rates for osteoporosis by leveraging existing x-ray data.</p>\",\"PeriodicalId\":55290,\"journal\":{\"name\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"volume\":\" \",\"pages\":\"8465371251380240\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08465371251380240\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Association of Radiologists Journal-Journal De L Association Canadienne Des Radiologistes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08465371251380240","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
AI Screening Tool Based on X-Rays Improves Early Detection of Decreased Bone Density in a Clinical Setting.
Purpose: Osteoporosis is an under-screened musculoskeletal disorder that results in diminished quality of life and significant burden to the healthcare system. We aimed to evaluate the ability of Rho, an artificial intelligence (AI) tool, to prospectively identify patients at-risk for low bone mineral density (BMD) from standard x-rays, its adoption rate by radiologists, and acceptance by primary care providers (PCPs).
Methods: Patients ≥50 years were recruited when undergoing an x-ray of a Rho-eligible body part for any clinical indication. Questionnaires were completed at baseline and 6-month follow-up, and PCPs of "Rho-Positive" patients (those likely to have low BMD) were asked for feedback. Positive predictive value (PPV) was calculated in patients who returned within 6 months for a DXA.
Results: Of 1145 patients consented, 987 had x-rays screened by Rho, and 655 were flagged as Rho-Positive. Radiologists included this finding in 524 (80%) of reports. Of all Rho-Positive patients, 125 had a DXA within 6 months; Rho had a 74% PPV for DXA T-Score <-1. From 51 PCP responses, 78% found Rho beneficial. Of 389 patients with follow-up questionnaire data, a greater proportion of Rho-Positive versus -negative patients had discussed bone health with their PCP since study start (36% vs 18%, P < .001), or were newly diagnosed with osteoporosis (11% vs 5%; P = .03).
Conclusion: By identifying patients at-risk of low BMD, with acceptability of reporting by radiologists and generally positive feedback from PCPs, Rho has the potential to improve low screening rates for osteoporosis by leveraging existing x-ray data.
期刊介绍:
The Canadian Association of Radiologists Journal is a peer-reviewed, Medline-indexed publication that presents a broad scientific review of radiology in Canada. The Journal covers such topics as abdominal imaging, cardiovascular radiology, computed tomography, continuing professional development, education and training, gastrointestinal radiology, health policy and practice, magnetic resonance imaging, musculoskeletal radiology, neuroradiology, nuclear medicine, pediatric radiology, radiology history, radiology practice guidelines and advisories, thoracic and cardiac imaging, trauma and emergency room imaging, ultrasonography, and vascular and interventional radiology. Article types considered for publication include original research articles, critically appraised topics, review articles, guest editorials, pictorial essays, technical notes, and letter to the Editor.