Imanol Isasa, Mikel Catalina, Gorka Epelde, Naiara Aginako, Andoni Beristain
{"title":"急性髓系白血病水平联合学习环境下的合成表格数据生成:基于案例的模拟研究。","authors":"Imanol Isasa, Mikel Catalina, Gorka Epelde, Naiara Aginako, Andoni Beristain","doi":"10.2196/74116","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Data scarcity and dispersion pose significant obstacles in biomedical research, particularly when addressing rare diseases. In such scenarios, synthetic data generation (SDG) has emerged as a promising path to mitigate the first issue. Concurrently, federated learning is a machine learning paradigm where multiple nodes collaborate to create a centralized model with knowledge that is distilled from the data in different nodes, but without the need for sharing it. This research explores the combination of SDG and federated learning technologies in the context of acute myeloid leukemia, a rare hematological disorder, evaluating their combined impact and the quality of the generated artificial datasets.</p><p><strong>Objective: </strong>This study aims to evaluate the privacy- and fidelity-related impact of horizontally federating SDG models in different data distribution scenarios and with different numbers of nodes, comparing them with centralized baseline SDG models.</p><p><strong>Methods: </strong>Two state-of-the-art generative models, conditional tabular generative adversarial network and FedTabDiff, were trained considering four different scenarios: (1) a nonfederated baseline with all the data available, (2) a federated scenario where the data were evenly distributed among different nodes, (3) a federated scenario where the data were unevenly and randomly distributed (imbalanced data), and (4) a federated scenario with nonindependent and identically distributed data distributions. For each of the federated scenarios, a fixed set of node quantities (3, 5, 7, 10) was considered to assess its impact, and the generated data were evaluated, attending to a fidelity-privacy trade-off.</p><p><strong>Results: </strong>The computed fidelity metrics exhibited statistically significant deteriorations (P<.001) up to 21% in the conditional tabular generative adversarial network and up to 62% in the FedTabDiff model due to the federation process. When comparing federated experiments trained with diverse numbers of nodes, no strong tendencies were observed, even if specific comparisons resulted in significative differences. Privacy metrics were mainly maintained while obtaining maximum improvements of 55% and maximum deteriorations of 26% between both models, although they were not statistically significant.</p><p><strong>Conclusions: </strong>Within the scope of the use case scenario in this paper, the act of horizontally federating SDG algorithms results in a loss of data fidelity compared to the nonfederated baseline while maintaining privacy levels. However, this deterioration does not significantly increase as the number of nodes used to train the models grows, even though significative differences were found in specific comparisons. The different data partition distribution configurations had no significant effect on the metrics, as similar tendencies were found for all scenarios.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e74116"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthetic Tabular Data Generation Under Horizontal Federated Learning Environments in Acute Myeloid Leukemia: Case-Based Simulation Study.\",\"authors\":\"Imanol Isasa, Mikel Catalina, Gorka Epelde, Naiara Aginako, Andoni Beristain\",\"doi\":\"10.2196/74116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Data scarcity and dispersion pose significant obstacles in biomedical research, particularly when addressing rare diseases. In such scenarios, synthetic data generation (SDG) has emerged as a promising path to mitigate the first issue. Concurrently, federated learning is a machine learning paradigm where multiple nodes collaborate to create a centralized model with knowledge that is distilled from the data in different nodes, but without the need for sharing it. This research explores the combination of SDG and federated learning technologies in the context of acute myeloid leukemia, a rare hematological disorder, evaluating their combined impact and the quality of the generated artificial datasets.</p><p><strong>Objective: </strong>This study aims to evaluate the privacy- and fidelity-related impact of horizontally federating SDG models in different data distribution scenarios and with different numbers of nodes, comparing them with centralized baseline SDG models.</p><p><strong>Methods: </strong>Two state-of-the-art generative models, conditional tabular generative adversarial network and FedTabDiff, were trained considering four different scenarios: (1) a nonfederated baseline with all the data available, (2) a federated scenario where the data were evenly distributed among different nodes, (3) a federated scenario where the data were unevenly and randomly distributed (imbalanced data), and (4) a federated scenario with nonindependent and identically distributed data distributions. For each of the federated scenarios, a fixed set of node quantities (3, 5, 7, 10) was considered to assess its impact, and the generated data were evaluated, attending to a fidelity-privacy trade-off.</p><p><strong>Results: </strong>The computed fidelity metrics exhibited statistically significant deteriorations (P<.001) up to 21% in the conditional tabular generative adversarial network and up to 62% in the FedTabDiff model due to the federation process. When comparing federated experiments trained with diverse numbers of nodes, no strong tendencies were observed, even if specific comparisons resulted in significative differences. Privacy metrics were mainly maintained while obtaining maximum improvements of 55% and maximum deteriorations of 26% between both models, although they were not statistically significant.</p><p><strong>Conclusions: </strong>Within the scope of the use case scenario in this paper, the act of horizontally federating SDG algorithms results in a loss of data fidelity compared to the nonfederated baseline while maintaining privacy levels. However, this deterioration does not significantly increase as the number of nodes used to train the models grows, even though significative differences were found in specific comparisons. The different data partition distribution configurations had no significant effect on the metrics, as similar tendencies were found for all scenarios.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e74116\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/74116\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/74116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Synthetic Tabular Data Generation Under Horizontal Federated Learning Environments in Acute Myeloid Leukemia: Case-Based Simulation Study.
Background: Data scarcity and dispersion pose significant obstacles in biomedical research, particularly when addressing rare diseases. In such scenarios, synthetic data generation (SDG) has emerged as a promising path to mitigate the first issue. Concurrently, federated learning is a machine learning paradigm where multiple nodes collaborate to create a centralized model with knowledge that is distilled from the data in different nodes, but without the need for sharing it. This research explores the combination of SDG and federated learning technologies in the context of acute myeloid leukemia, a rare hematological disorder, evaluating their combined impact and the quality of the generated artificial datasets.
Objective: This study aims to evaluate the privacy- and fidelity-related impact of horizontally federating SDG models in different data distribution scenarios and with different numbers of nodes, comparing them with centralized baseline SDG models.
Methods: Two state-of-the-art generative models, conditional tabular generative adversarial network and FedTabDiff, were trained considering four different scenarios: (1) a nonfederated baseline with all the data available, (2) a federated scenario where the data were evenly distributed among different nodes, (3) a federated scenario where the data were unevenly and randomly distributed (imbalanced data), and (4) a federated scenario with nonindependent and identically distributed data distributions. For each of the federated scenarios, a fixed set of node quantities (3, 5, 7, 10) was considered to assess its impact, and the generated data were evaluated, attending to a fidelity-privacy trade-off.
Results: The computed fidelity metrics exhibited statistically significant deteriorations (P<.001) up to 21% in the conditional tabular generative adversarial network and up to 62% in the FedTabDiff model due to the federation process. When comparing federated experiments trained with diverse numbers of nodes, no strong tendencies were observed, even if specific comparisons resulted in significative differences. Privacy metrics were mainly maintained while obtaining maximum improvements of 55% and maximum deteriorations of 26% between both models, although they were not statistically significant.
Conclusions: Within the scope of the use case scenario in this paper, the act of horizontally federating SDG algorithms results in a loss of data fidelity compared to the nonfederated baseline while maintaining privacy levels. However, this deterioration does not significantly increase as the number of nodes used to train the models grows, even though significative differences were found in specific comparisons. The different data partition distribution configurations had no significant effect on the metrics, as similar tendencies were found for all scenarios.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.