Joseph A DePaolo-Boisvert, Karina Tuz, David D L Minh, Oscar X Juarez
{"title":"霍乱弧菌呼吸复合体NQR中抑制剂结合相互作用的分子动力学分析","authors":"Joseph A DePaolo-Boisvert, Karina Tuz, David D L Minh, Oscar X Juarez","doi":"10.1002/prot.70036","DOIUrl":null,"url":null,"abstract":"<p><p>The sodium-pumping ubiquinone oxidoreductase sodium pumping quinone reductase (NQR) is an important enzyme in the respiratory chain of multiple pathogenic gram-negative bacteria. NQR has been proposed as a viable antibiotic target due to its importance in supporting energy-consuming reactions and its absence in human cells. In this study, molecular dynamics simulations were conducted to characterize the interactions between the ubiquinone binding pocket of Vibrio cholerae NQR with its substrate analogue ubiquinone-4 and three potent inhibitors: HQNO, aurachin-D42, and korormicin-A. Through interaction fingerprinting, distance calculations, and clustering analysis, important binding motifs for each of these ligands were identified. Subunit B residues K54, F137, E144, V145, V155, E157, G158, F159, and F160 were frequently identified as establishing either hydrogen bonding interactions or hydrophobic interactions with these three ligands. The findings of this in silico study are interpreted in view of mutagenesis analyses previously published in the literature. The elucidation of important binding interactions associated with the inhibitors is critical as it informs structure-activity relationships, which are essential for the development of novel antibiotics targeting NQR.</p>","PeriodicalId":56271,"journal":{"name":"Proteins-Structure Function and Bioinformatics","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics Analysis of Inhibitor Binding Interactions in the Vibrio cholerae Respiratory Complex NQR.\",\"authors\":\"Joseph A DePaolo-Boisvert, Karina Tuz, David D L Minh, Oscar X Juarez\",\"doi\":\"10.1002/prot.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The sodium-pumping ubiquinone oxidoreductase sodium pumping quinone reductase (NQR) is an important enzyme in the respiratory chain of multiple pathogenic gram-negative bacteria. NQR has been proposed as a viable antibiotic target due to its importance in supporting energy-consuming reactions and its absence in human cells. In this study, molecular dynamics simulations were conducted to characterize the interactions between the ubiquinone binding pocket of Vibrio cholerae NQR with its substrate analogue ubiquinone-4 and three potent inhibitors: HQNO, aurachin-D42, and korormicin-A. Through interaction fingerprinting, distance calculations, and clustering analysis, important binding motifs for each of these ligands were identified. Subunit B residues K54, F137, E144, V145, V155, E157, G158, F159, and F160 were frequently identified as establishing either hydrogen bonding interactions or hydrophobic interactions with these three ligands. The findings of this in silico study are interpreted in view of mutagenesis analyses previously published in the literature. The elucidation of important binding interactions associated with the inhibitors is critical as it informs structure-activity relationships, which are essential for the development of novel antibiotics targeting NQR.</p>\",\"PeriodicalId\":56271,\"journal\":{\"name\":\"Proteins-Structure Function and Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteins-Structure Function and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/prot.70036\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteins-Structure Function and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prot.70036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular Dynamics Analysis of Inhibitor Binding Interactions in the Vibrio cholerae Respiratory Complex NQR.
The sodium-pumping ubiquinone oxidoreductase sodium pumping quinone reductase (NQR) is an important enzyme in the respiratory chain of multiple pathogenic gram-negative bacteria. NQR has been proposed as a viable antibiotic target due to its importance in supporting energy-consuming reactions and its absence in human cells. In this study, molecular dynamics simulations were conducted to characterize the interactions between the ubiquinone binding pocket of Vibrio cholerae NQR with its substrate analogue ubiquinone-4 and three potent inhibitors: HQNO, aurachin-D42, and korormicin-A. Through interaction fingerprinting, distance calculations, and clustering analysis, important binding motifs for each of these ligands were identified. Subunit B residues K54, F137, E144, V145, V155, E157, G158, F159, and F160 were frequently identified as establishing either hydrogen bonding interactions or hydrophobic interactions with these three ligands. The findings of this in silico study are interpreted in view of mutagenesis analyses previously published in the literature. The elucidation of important binding interactions associated with the inhibitors is critical as it informs structure-activity relationships, which are essential for the development of novel antibiotics targeting NQR.
期刊介绍:
PROTEINS : Structure, Function, and Bioinformatics publishes original reports of significant experimental and analytic research in all areas of protein research: structure, function, computation, genetics, and design. The journal encourages reports that present new experimental or computational approaches for interpreting and understanding data from biophysical chemistry, structural studies of proteins and macromolecular assemblies, alterations of protein structure and function engineered through techniques of molecular biology and genetics, functional analyses under physiologic conditions, as well as the interactions of proteins with receptors, nucleic acids, or other specific ligands or substrates. Research in protein and peptide biochemistry directed toward synthesizing or characterizing molecules that simulate aspects of the activity of proteins, or that act as inhibitors of protein function, is also within the scope of PROTEINS. In addition to full-length reports, short communications (usually not more than 4 printed pages) and prediction reports are welcome. Reviews are typically by invitation; authors are encouraged to submit proposed topics for consideration.