{"title":"基于投影的可扩展连续体机器人和带肘关节的超冗余度机器人运动学逆模型。","authors":"Sven Fritsch, Dirk Oberschmidt","doi":"10.3389/frobt.2025.1627688","DOIUrl":null,"url":null,"abstract":"<p><p>Inverse kinematics is a core problem in robotics, involving the use of kinematic equations to calculate the joint configurations required to achieve a target pose. This study introduces a novel inverse kinematic model (IKM) for extensible (i.e., length-adjustable) continuum robots (CRs) and hyper-redundant robots (HRRs) featuring an elbow joint. This IKM numerically solves a set of equations representing geometric constraints (abbreviated as NSGC). NSGC can handle target poses <math> <mrow> <msub><mrow><mi>X</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>=</mo> <mrow><mo>[</mo> <mrow> <msub><mrow><mi>x</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>y</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>z</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>ψ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </mrow> <mo>]</mo></mrow> </mrow> </math> in 3D space, which are projected onto a 2D plane and solved numerically. NSGC is capable of real-time operation and accounts for elbow joint limits. Extensive simulations and empirical tests confirm the reliability, performance, and practical applicability of NSGC.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1627688"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464886/pdf/","citationCount":"0","resultStr":"{\"title\":\"A projection-based inverse kinematic model for extensible continuum robots and hyper-redundant robots with an elbow joint.\",\"authors\":\"Sven Fritsch, Dirk Oberschmidt\",\"doi\":\"10.3389/frobt.2025.1627688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inverse kinematics is a core problem in robotics, involving the use of kinematic equations to calculate the joint configurations required to achieve a target pose. This study introduces a novel inverse kinematic model (IKM) for extensible (i.e., length-adjustable) continuum robots (CRs) and hyper-redundant robots (HRRs) featuring an elbow joint. This IKM numerically solves a set of equations representing geometric constraints (abbreviated as NSGC). NSGC can handle target poses <math> <mrow> <msub><mrow><mi>X</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>=</mo> <mrow><mo>[</mo> <mrow> <msub><mrow><mi>x</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>y</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>z</mi></mrow> <mrow><mi>t</mi></mrow> </msub> <mo>,</mo> <msub><mrow><mi>ψ</mi></mrow> <mrow><mi>t</mi></mrow> </msub> </mrow> <mo>]</mo></mrow> </mrow> </math> in 3D space, which are projected onto a 2D plane and solved numerically. NSGC is capable of real-time operation and accounts for elbow joint limits. Extensive simulations and empirical tests confirm the reliability, performance, and practical applicability of NSGC.</p>\",\"PeriodicalId\":47597,\"journal\":{\"name\":\"Frontiers in Robotics and AI\",\"volume\":\"12 \",\"pages\":\"1627688\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Robotics and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frobt.2025.1627688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1627688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
摘要
逆运动学是机器人技术中的一个核心问题,涉及到使用运动学方程来计算实现目标姿态所需的关节构型。本研究为具有肘关节的可扩展(即长度可调节)连续体机器人(cr)和超冗余机器人(HRRs)引入了一种新的逆运动学模型(IKM)。该IKM以数值方式求解一组表示几何约束(简称NSGC)的方程。NSGC可以处理三维空间中的目标姿态X t = [X t, y t, z t, ψ t],并将其投影到二维平面上进行数值求解。NSGC能够实时操作,并考虑肘关节极限。大量的仿真和经验试验证实了NSGC的可靠性、性能和实用性。
A projection-based inverse kinematic model for extensible continuum robots and hyper-redundant robots with an elbow joint.
Inverse kinematics is a core problem in robotics, involving the use of kinematic equations to calculate the joint configurations required to achieve a target pose. This study introduces a novel inverse kinematic model (IKM) for extensible (i.e., length-adjustable) continuum robots (CRs) and hyper-redundant robots (HRRs) featuring an elbow joint. This IKM numerically solves a set of equations representing geometric constraints (abbreviated as NSGC). NSGC can handle target poses in 3D space, which are projected onto a 2D plane and solved numerically. NSGC is capable of real-time operation and accounts for elbow joint limits. Extensive simulations and empirical tests confirm the reliability, performance, and practical applicability of NSGC.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.