TockyLocus:定量分析Nr4a3-Tocky和Foxp3-Tocky小鼠的流式细胞荧光计时器数据。

IF 1.3 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-08-26 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf060
Masahiro Ono
{"title":"TockyLocus:定量分析Nr4a3-Tocky和Foxp3-Tocky小鼠的流式细胞荧光计时器数据。","authors":"Masahiro Ono","doi":"10.1093/biomethods/bpaf060","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescent Timer proteins undergo a time-dependent shift from blue to red fluorescence after translation, providing a temporal record of transcriptional activity in Timer reporter systems. While Timer proteins are well suited for studying dynamic cellular processes such as T cell activation using the Timer-of-Cell-Kinetics-and-Activity (Tocky) framework, quantitative analysis of Timer-based flow cytometry data has yet to be fully standardized. In this study, we optimize quantitative analysis methods for the key parameter within the Tocky framework, Timer Angle, and introduce TockyLocus, an open-source <math><mi>R</mi></math> package that implements a five-category scheme based on biologically grounded angular intervals (designated as Tocky Loci). This approach is validated using both simulated and experimental datasets and enables downstream statistical testing and visualization of transcriptional dynamics in flow cytometry data. Using computational modelling of Timer protein kinetics, we define transcriptional dynamics in relation to key anchoring points in Timer Angle values at <math> <mrow> <mrow> <msup><mrow><mn>0</mn></mrow> <mo>°</mo></msup> </mrow> </mrow> </math> , <math> <mrow> <mrow> <msup> <mrow><mrow><mn>45</mn></mrow> </mrow> <mo>°</mo></msup> </mrow> </mrow> </math> , and <math> <mrow> <mrow> <msup> <mrow><mrow><mn>90</mn></mrow> </mrow> <mo>°</mo></msup> </mrow> </mrow> </math> . Comprehensive simulations with synthetic spike-in datasets further demonstrate the robustness of the five-locus approach, which captures the three key points and the intermediate regions between these points. Building on the TockyPrep preprocessing framework, we systematically evaluated categorization schemes ranging from three to seven loci on real-world datasets from Nr4a3-Tocky and Foxp3-Tocky mice. The five-locus model emerged as optimal, showing significant advantages in balancing biological interpretability and statistical robustness. Optimized algorithms implemented in the TockyLocus package now standardize quantitative analysis of Timer Angle data, enabling reproducible interpretation without reliance on arbitrary gating or complex assumptions. In summary, the five-locus categorization of Timer Angle data effectively links underlying biological dynamics to the percentage of cells in each Tocky Locus, providing a robust and interpretable framework for investigating transcriptional dynamics in immunology and related fields.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf060"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464679/pdf/","citationCount":"0","resultStr":"{\"title\":\"TockyLocus: quantitative analysis of flow cytometric fluorescent timer data in Nr4a3-Tocky and Foxp3-Tocky mice.\",\"authors\":\"Masahiro Ono\",\"doi\":\"10.1093/biomethods/bpaf060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fluorescent Timer proteins undergo a time-dependent shift from blue to red fluorescence after translation, providing a temporal record of transcriptional activity in Timer reporter systems. While Timer proteins are well suited for studying dynamic cellular processes such as T cell activation using the Timer-of-Cell-Kinetics-and-Activity (Tocky) framework, quantitative analysis of Timer-based flow cytometry data has yet to be fully standardized. In this study, we optimize quantitative analysis methods for the key parameter within the Tocky framework, Timer Angle, and introduce TockyLocus, an open-source <math><mi>R</mi></math> package that implements a five-category scheme based on biologically grounded angular intervals (designated as Tocky Loci). This approach is validated using both simulated and experimental datasets and enables downstream statistical testing and visualization of transcriptional dynamics in flow cytometry data. Using computational modelling of Timer protein kinetics, we define transcriptional dynamics in relation to key anchoring points in Timer Angle values at <math> <mrow> <mrow> <msup><mrow><mn>0</mn></mrow> <mo>°</mo></msup> </mrow> </mrow> </math> , <math> <mrow> <mrow> <msup> <mrow><mrow><mn>45</mn></mrow> </mrow> <mo>°</mo></msup> </mrow> </mrow> </math> , and <math> <mrow> <mrow> <msup> <mrow><mrow><mn>90</mn></mrow> </mrow> <mo>°</mo></msup> </mrow> </mrow> </math> . Comprehensive simulations with synthetic spike-in datasets further demonstrate the robustness of the five-locus approach, which captures the three key points and the intermediate regions between these points. Building on the TockyPrep preprocessing framework, we systematically evaluated categorization schemes ranging from three to seven loci on real-world datasets from Nr4a3-Tocky and Foxp3-Tocky mice. The five-locus model emerged as optimal, showing significant advantages in balancing biological interpretability and statistical robustness. Optimized algorithms implemented in the TockyLocus package now standardize quantitative analysis of Timer Angle data, enabling reproducible interpretation without reliance on arbitrary gating or complex assumptions. In summary, the five-locus categorization of Timer Angle data effectively links underlying biological dynamics to the percentage of cells in each Tocky Locus, providing a robust and interpretable framework for investigating transcriptional dynamics in immunology and related fields.</p>\",\"PeriodicalId\":36528,\"journal\":{\"name\":\"Biology Methods and Protocols\",\"volume\":\"10 1\",\"pages\":\"bpaf060\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464679/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Methods and Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biomethods/bpaf060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

荧光计时器蛋白在翻译后经历从蓝色荧光到红色荧光的时间依赖性转变,在计时器报告系统中提供了转录活性的时间记录。虽然Timer蛋白非常适合于使用细胞动力学和活性(Tocky)框架研究动态细胞过程,如T细胞活化,但基于Timer的流式细胞术数据的定量分析尚未完全标准化。在本研究中,我们优化了Tocky框架中关键参数Timer Angle的定量分析方法,并引入了TockyLocus,这是一个开源R包,它实现了基于生物基础角间隔(称为Tocky Loci)的五类方案。该方法使用模拟和实验数据集进行了验证,并实现了流式细胞术数据中转录动力学的下游统计测试和可视化。利用Timer蛋白动力学的计算模型,我们定义了与Timer角0°、45°和90°值中的关键锚点相关的转录动力学。利用合成峰值数据集的综合仿真进一步证明了五位点方法的鲁棒性,该方法捕获了三个关键点和这些点之间的中间区域。在TockyPrep预处理框架的基础上,我们系统地评估了Nr4a3-Tocky和Foxp3-Tocky小鼠真实数据集上3到7个基因座的分类方案。五位点模型是最优的,在平衡生物可解释性和统计稳健性方面表现出显著的优势。TockyLocus软件包中实现的优化算法现在标准化了计时器角度数据的定量分析,无需依赖任意门控或复杂假设即可实现可重复解释。总之,Timer Angle数据的五位点分类有效地将潜在的生物动力学与每个Tocky位点的细胞百分比联系起来,为研究免疫学和相关领域的转录动力学提供了一个强大且可解释的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TockyLocus: quantitative analysis of flow cytometric fluorescent timer data in Nr4a3-Tocky and Foxp3-Tocky mice.

Fluorescent Timer proteins undergo a time-dependent shift from blue to red fluorescence after translation, providing a temporal record of transcriptional activity in Timer reporter systems. While Timer proteins are well suited for studying dynamic cellular processes such as T cell activation using the Timer-of-Cell-Kinetics-and-Activity (Tocky) framework, quantitative analysis of Timer-based flow cytometry data has yet to be fully standardized. In this study, we optimize quantitative analysis methods for the key parameter within the Tocky framework, Timer Angle, and introduce TockyLocus, an open-source R package that implements a five-category scheme based on biologically grounded angular intervals (designated as Tocky Loci). This approach is validated using both simulated and experimental datasets and enables downstream statistical testing and visualization of transcriptional dynamics in flow cytometry data. Using computational modelling of Timer protein kinetics, we define transcriptional dynamics in relation to key anchoring points in Timer Angle values at 0 ° , 45 ° , and 90 ° . Comprehensive simulations with synthetic spike-in datasets further demonstrate the robustness of the five-locus approach, which captures the three key points and the intermediate regions between these points. Building on the TockyPrep preprocessing framework, we systematically evaluated categorization schemes ranging from three to seven loci on real-world datasets from Nr4a3-Tocky and Foxp3-Tocky mice. The five-locus model emerged as optimal, showing significant advantages in balancing biological interpretability and statistical robustness. Optimized algorithms implemented in the TockyLocus package now standardize quantitative analysis of Timer Angle data, enabling reproducible interpretation without reliance on arbitrary gating or complex assumptions. In summary, the five-locus categorization of Timer Angle data effectively links underlying biological dynamics to the percentage of cells in each Tocky Locus, providing a robust and interpretable framework for investigating transcriptional dynamics in immunology and related fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信