{"title":"阿尔茨海默病突触可塑性受损机制。","authors":"Rasoul Ebrahimi, Zahra Golzari, Mahsa Heidari-Foroozan, Abolfazl Khosravi, Samin Ghaheri Sharghi, Mobina Saleh, Shakiba Salarvandian, Khadijeh Esmaeilpour","doi":"10.1007/s11011-025-01712-9","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive decline driven by a complex interplay of genetic, environmental, and lifestyle factors. Increasing evidence highlights impaired synaptic plasticity as a major contributor to early cognitive deficits, often preceding neuronal loss. In particular, disruption of long-term potentiation (LTP) within the hippocampus, a region essential for learning and memory, plays a central role. Accumulation of amyloid β (Aβ) plaques and hyperphosphorylated tau proteins compromises synaptic integrity, leading to reduced synaptic density and altered protein expression critical for excitatory signaling. Additional mechanisms, including microglial activation and mitochondrial dysfunction, further aggravate synaptic impairment through inflammation and oxidative stress. Understanding these interconnected molecular and cellular disruptions offers crucial insight into the pathways underlying synaptic dysfunction in AD. By elucidating these mechanisms, future research can inform novel therapeutic strategies aimed at preserving synaptic function and slowing disease progression.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 7","pages":"277"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impaired Synaptic Plasticity Mechanisms in Alzheimer's Disease.\",\"authors\":\"Rasoul Ebrahimi, Zahra Golzari, Mahsa Heidari-Foroozan, Abolfazl Khosravi, Samin Ghaheri Sharghi, Mobina Saleh, Shakiba Salarvandian, Khadijeh Esmaeilpour\",\"doi\":\"10.1007/s11011-025-01712-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive decline driven by a complex interplay of genetic, environmental, and lifestyle factors. Increasing evidence highlights impaired synaptic plasticity as a major contributor to early cognitive deficits, often preceding neuronal loss. In particular, disruption of long-term potentiation (LTP) within the hippocampus, a region essential for learning and memory, plays a central role. Accumulation of amyloid β (Aβ) plaques and hyperphosphorylated tau proteins compromises synaptic integrity, leading to reduced synaptic density and altered protein expression critical for excitatory signaling. Additional mechanisms, including microglial activation and mitochondrial dysfunction, further aggravate synaptic impairment through inflammation and oxidative stress. Understanding these interconnected molecular and cellular disruptions offers crucial insight into the pathways underlying synaptic dysfunction in AD. By elucidating these mechanisms, future research can inform novel therapeutic strategies aimed at preserving synaptic function and slowing disease progression.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 7\",\"pages\":\"277\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01712-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01712-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Impaired Synaptic Plasticity Mechanisms in Alzheimer's Disease.
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive decline driven by a complex interplay of genetic, environmental, and lifestyle factors. Increasing evidence highlights impaired synaptic plasticity as a major contributor to early cognitive deficits, often preceding neuronal loss. In particular, disruption of long-term potentiation (LTP) within the hippocampus, a region essential for learning and memory, plays a central role. Accumulation of amyloid β (Aβ) plaques and hyperphosphorylated tau proteins compromises synaptic integrity, leading to reduced synaptic density and altered protein expression critical for excitatory signaling. Additional mechanisms, including microglial activation and mitochondrial dysfunction, further aggravate synaptic impairment through inflammation and oxidative stress. Understanding these interconnected molecular and cellular disruptions offers crucial insight into the pathways underlying synaptic dysfunction in AD. By elucidating these mechanisms, future research can inform novel therapeutic strategies aimed at preserving synaptic function and slowing disease progression.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.