Xianfei Zhou, Fan Yang, Yisheng Ling, Luoshun Huang, Renwei Xing, Yong Lan, Yang Zhang
{"title":"盐霉素在胆管癌中通过激活ROS/NF-κB/NLRP3通路促进细胞死亡。","authors":"Xianfei Zhou, Fan Yang, Yisheng Ling, Luoshun Huang, Renwei Xing, Yong Lan, Yang Zhang","doi":"10.4149/neo_2025_250613N254","DOIUrl":null,"url":null,"abstract":"<p><p>Salinomycin (Sal), an ionophore antibiotic, has shown promising anti-cancer activity in multiple cancers. In this study, we aimed to investigate the effect of Sal on the ROS/NF-κB/NLRP3 pathway in cholangiocarcinoma (CCA) in vitro and in vivo. We observed that Sal inhibited cell proliferation, migration, and invasion. Sal promoted an increase of Annexin-V positive cells in Huh-28 and RBE cells in a dose-dependent manner, which was efficiently inhibited by VX-765 (Caspase-1 inhibitor), while Sal-induced increase of ROS levels was partially inhibited by exposure to N-acetyl-L-cysteine (ROS scavenger). Moreover, Sal inhibited tumor growth in RBE tumor-bearing mice. The activation of Sal on the ROS/NF-κB/NLRP3 pathway was also identified in CCA cells and tumor tissues. Collectively, these results suggested that Sal activated the ROS/NF-κB/NLRP3 pathway to promote pyroptosis-induced cell death in CCA and suggest it may be a promising treatment strategy for anti-CCA.</p>","PeriodicalId":19266,"journal":{"name":"Neoplasma","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salinomycin promotes cell death via the activation of the ROS/NF-κB/NLRP3 pathway in cholangiocarcinoma.\",\"authors\":\"Xianfei Zhou, Fan Yang, Yisheng Ling, Luoshun Huang, Renwei Xing, Yong Lan, Yang Zhang\",\"doi\":\"10.4149/neo_2025_250613N254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Salinomycin (Sal), an ionophore antibiotic, has shown promising anti-cancer activity in multiple cancers. In this study, we aimed to investigate the effect of Sal on the ROS/NF-κB/NLRP3 pathway in cholangiocarcinoma (CCA) in vitro and in vivo. We observed that Sal inhibited cell proliferation, migration, and invasion. Sal promoted an increase of Annexin-V positive cells in Huh-28 and RBE cells in a dose-dependent manner, which was efficiently inhibited by VX-765 (Caspase-1 inhibitor), while Sal-induced increase of ROS levels was partially inhibited by exposure to N-acetyl-L-cysteine (ROS scavenger). Moreover, Sal inhibited tumor growth in RBE tumor-bearing mice. The activation of Sal on the ROS/NF-κB/NLRP3 pathway was also identified in CCA cells and tumor tissues. Collectively, these results suggested that Sal activated the ROS/NF-κB/NLRP3 pathway to promote pyroptosis-induced cell death in CCA and suggest it may be a promising treatment strategy for anti-CCA.</p>\",\"PeriodicalId\":19266,\"journal\":{\"name\":\"Neoplasma\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4149/neo_2025_250613N254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4149/neo_2025_250613N254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Salinomycin promotes cell death via the activation of the ROS/NF-κB/NLRP3 pathway in cholangiocarcinoma.
Salinomycin (Sal), an ionophore antibiotic, has shown promising anti-cancer activity in multiple cancers. In this study, we aimed to investigate the effect of Sal on the ROS/NF-κB/NLRP3 pathway in cholangiocarcinoma (CCA) in vitro and in vivo. We observed that Sal inhibited cell proliferation, migration, and invasion. Sal promoted an increase of Annexin-V positive cells in Huh-28 and RBE cells in a dose-dependent manner, which was efficiently inhibited by VX-765 (Caspase-1 inhibitor), while Sal-induced increase of ROS levels was partially inhibited by exposure to N-acetyl-L-cysteine (ROS scavenger). Moreover, Sal inhibited tumor growth in RBE tumor-bearing mice. The activation of Sal on the ROS/NF-κB/NLRP3 pathway was also identified in CCA cells and tumor tissues. Collectively, these results suggested that Sal activated the ROS/NF-κB/NLRP3 pathway to promote pyroptosis-induced cell death in CCA and suggest it may be a promising treatment strategy for anti-CCA.