{"title":"邻亚硝基苯酚循环伏安法测定钴离子的研究。","authors":"Gulnora Karabayeva, Nigora Qutlimurotova, Zukhra Yakhshieva, Rukhiya Qutlimurotova, Nargiza Atakulova, Jasur Tursunqulov","doi":"10.1155/ianc/6675527","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for cobalt-based alloys has been steadily increasing due to advancements in industrial and cutting-edge technologies, particularly in metallurgy, where cobalt plays a crucial role in high-performance superalloys, battery production, and corrosion-resistant materials. Consequently, the concentration of cobalt ions in wastewater and environmental samples has exceeded permissible levels, raising significant ecological concerns. This study presents the development of an efficient method for the determination of cobalt(II) ions using a silver/mercury film working electrode (Hg(Ag)FE) modified with the organic dye <i>ortho-nitrosophenol</i> (o-NF) through cyclic voltammetry (CV). Optimization of the experimental conditions revealed that an acetate buffer (0.1 M, pH 5.1) served as the supporting electrolyte, with an accumulation time of 10 s and a concentration of 2.0 μM o-nitrosophenol. The preconcentration conditions were adjusted to enhance the sensitivity and selectivity for cobalt(II) ion detection. The method exhibited a linear relationship in the concentration range of 0.040-0.160 μM (<i>R</i> <sup>2</sup> = 0.9863), with a limit of detection (LOD) of 0.010 μM and a limit of quantification (LOQ) of 0.034 μM for Co(II) ions. The proposed method was successfully applied to the analysis of water samples from the Aydar-Arnasoy Reservoir, and the accuracy of the results was statistically validated using Student's <i>t</i>-test. These findings demonstrate the potential of the developed method as an effective tool for environmental monitoring and the determination of cobalt ions in ecological protection initiatives.</p>","PeriodicalId":13888,"journal":{"name":"International Journal of Analytical Chemistry","volume":"2025 ","pages":"6675527"},"PeriodicalIF":1.7000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a Cyclic Voltammetric Method for the Determination of Cobalt(II) Ions Using o-Nitrosophenol.\",\"authors\":\"Gulnora Karabayeva, Nigora Qutlimurotova, Zukhra Yakhshieva, Rukhiya Qutlimurotova, Nargiza Atakulova, Jasur Tursunqulov\",\"doi\":\"10.1155/ianc/6675527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for cobalt-based alloys has been steadily increasing due to advancements in industrial and cutting-edge technologies, particularly in metallurgy, where cobalt plays a crucial role in high-performance superalloys, battery production, and corrosion-resistant materials. Consequently, the concentration of cobalt ions in wastewater and environmental samples has exceeded permissible levels, raising significant ecological concerns. This study presents the development of an efficient method for the determination of cobalt(II) ions using a silver/mercury film working electrode (Hg(Ag)FE) modified with the organic dye <i>ortho-nitrosophenol</i> (o-NF) through cyclic voltammetry (CV). Optimization of the experimental conditions revealed that an acetate buffer (0.1 M, pH 5.1) served as the supporting electrolyte, with an accumulation time of 10 s and a concentration of 2.0 μM o-nitrosophenol. The preconcentration conditions were adjusted to enhance the sensitivity and selectivity for cobalt(II) ion detection. The method exhibited a linear relationship in the concentration range of 0.040-0.160 μM (<i>R</i> <sup>2</sup> = 0.9863), with a limit of detection (LOD) of 0.010 μM and a limit of quantification (LOQ) of 0.034 μM for Co(II) ions. The proposed method was successfully applied to the analysis of water samples from the Aydar-Arnasoy Reservoir, and the accuracy of the results was statistically validated using Student's <i>t</i>-test. These findings demonstrate the potential of the developed method as an effective tool for environmental monitoring and the determination of cobalt ions in ecological protection initiatives.</p>\",\"PeriodicalId\":13888,\"journal\":{\"name\":\"International Journal of Analytical Chemistry\",\"volume\":\"2025 \",\"pages\":\"6675527\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12474011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/ianc/6675527\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/ianc/6675527","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Development of a Cyclic Voltammetric Method for the Determination of Cobalt(II) Ions Using o-Nitrosophenol.
The demand for cobalt-based alloys has been steadily increasing due to advancements in industrial and cutting-edge technologies, particularly in metallurgy, where cobalt plays a crucial role in high-performance superalloys, battery production, and corrosion-resistant materials. Consequently, the concentration of cobalt ions in wastewater and environmental samples has exceeded permissible levels, raising significant ecological concerns. This study presents the development of an efficient method for the determination of cobalt(II) ions using a silver/mercury film working electrode (Hg(Ag)FE) modified with the organic dye ortho-nitrosophenol (o-NF) through cyclic voltammetry (CV). Optimization of the experimental conditions revealed that an acetate buffer (0.1 M, pH 5.1) served as the supporting electrolyte, with an accumulation time of 10 s and a concentration of 2.0 μM o-nitrosophenol. The preconcentration conditions were adjusted to enhance the sensitivity and selectivity for cobalt(II) ion detection. The method exhibited a linear relationship in the concentration range of 0.040-0.160 μM (R2 = 0.9863), with a limit of detection (LOD) of 0.010 μM and a limit of quantification (LOQ) of 0.034 μM for Co(II) ions. The proposed method was successfully applied to the analysis of water samples from the Aydar-Arnasoy Reservoir, and the accuracy of the results was statistically validated using Student's t-test. These findings demonstrate the potential of the developed method as an effective tool for environmental monitoring and the determination of cobalt ions in ecological protection initiatives.
期刊介绍:
International Journal of Analytical Chemistry publishes original research articles that report new experimental results and methods, especially in relation to important analytes, difficult matrices, and topical samples. Investigations may be fundamental, or else related to specific applications; examples being biological, environmental and food testing, and analysis in chemical synthesis and materials processing.
As well as original research, the International Journal of Analytical Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.