{"title":"卤化物钙钛矿研究的水银崛起:下一步是什么?","authors":"Mohd Taukeer Khan, Shahzada Ahmad","doi":"10.1007/s42247-024-00834-7","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskites are of high potential in the ongoing academic research, due to their distinctive electrical properties and crystalline structures. Halide perovskites show high light emissive properties and panchromatic light absorption across the visible spectrum. The exceptional electrical characteristics, such as their long carrier lifespan, high diffusion length, and charge carrier mobility, allow the electric charges to be transported and collected effectively. Furthermore, by tuning the cations and anions composition, perovskite's opto-electrical properties can be altered. Moreover, dimension reduction affects their band gap and intrinsic features to induce higher structural stability but at the cost of the quantum confinement effect. Owing to their exceptional properties, halide perovskites are being researched in energy-related and semiconducting applications, hold high promise and the future looks bright. But challenges remain, and the larger question is what needs to be done to make them more stable.</p>","PeriodicalId":11536,"journal":{"name":"Emergent Materials","volume":"8 5","pages":"3425-3432"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464137/pdf/","citationCount":"0","resultStr":"{\"title\":\"The mercurial rise in research of halide perovskites: what´s next.\",\"authors\":\"Mohd Taukeer Khan, Shahzada Ahmad\",\"doi\":\"10.1007/s42247-024-00834-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Perovskites are of high potential in the ongoing academic research, due to their distinctive electrical properties and crystalline structures. Halide perovskites show high light emissive properties and panchromatic light absorption across the visible spectrum. The exceptional electrical characteristics, such as their long carrier lifespan, high diffusion length, and charge carrier mobility, allow the electric charges to be transported and collected effectively. Furthermore, by tuning the cations and anions composition, perovskite's opto-electrical properties can be altered. Moreover, dimension reduction affects their band gap and intrinsic features to induce higher structural stability but at the cost of the quantum confinement effect. Owing to their exceptional properties, halide perovskites are being researched in energy-related and semiconducting applications, hold high promise and the future looks bright. But challenges remain, and the larger question is what needs to be done to make them more stable.</p>\",\"PeriodicalId\":11536,\"journal\":{\"name\":\"Emergent Materials\",\"volume\":\"8 5\",\"pages\":\"3425-3432\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464137/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emergent Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s42247-024-00834-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergent Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42247-024-00834-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The mercurial rise in research of halide perovskites: what´s next.
Perovskites are of high potential in the ongoing academic research, due to their distinctive electrical properties and crystalline structures. Halide perovskites show high light emissive properties and panchromatic light absorption across the visible spectrum. The exceptional electrical characteristics, such as their long carrier lifespan, high diffusion length, and charge carrier mobility, allow the electric charges to be transported and collected effectively. Furthermore, by tuning the cations and anions composition, perovskite's opto-electrical properties can be altered. Moreover, dimension reduction affects their band gap and intrinsic features to induce higher structural stability but at the cost of the quantum confinement effect. Owing to their exceptional properties, halide perovskites are being researched in energy-related and semiconducting applications, hold high promise and the future looks bright. But challenges remain, and the larger question is what needs to be done to make them more stable.
期刊介绍:
Emergent Materials is a multidisciplinary peer-reviewed journal, which publishes reviews, mini reviews, communications, progress reports, research news and original research articles at the forefront of physics, chemistry, biology, and engineering of advanced materials. Submissions will cover a wide range of articles, reviews and communications from the design and preparation of emerging materials to cutting edge applications.Emergent Materials aims to publish a series of high quality and high impact research articles that reflect and bring the best Research, at the forefront of physics, chemistry, biology, and engineering of advanced materials to the international research community. All manuscripts will be subjected to a preliminary review prior to the full reviewing process in order to evaluate their suitability for publication.Emergent Materials publishes articles that focus on but are not limited to, a variety of topics such as:• Design, synthesis, and characterization of advanced materials• Hierarchical materials• Self-assembly of materials• Polymers and composites• Coatings and membranes• Green and sustainable materials• Micro, meso and nanoporous materials• Nanostructures, nanocomposites and thin film• Carbon-based materials and applications• Renewable energy/Environment materials• Novel optical materials• Biomaterials• Catalysis• Surface Science and Engineering• Functional materials• Alloys design, synthesis, and applications• Nano-devices