Masumi Kamiyama, Kotoe Iijima, Rema Okuzawa, Ruka Kawata, Airi Kimura, Yuki Shinohara, Ayana Shimada, Mika Yamanaka, Ayuka Youda, Tamami Iwamoto
{"title":"多酚类物质对糖尿病肾病的作用机制。","authors":"Masumi Kamiyama, Kotoe Iijima, Rema Okuzawa, Ruka Kawata, Airi Kimura, Yuki Shinohara, Ayana Shimada, Mika Yamanaka, Ayuka Youda, Tamami Iwamoto","doi":"10.3390/cimb47090735","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy is a major challenge in medicine. While a variety of mechanisms underlie the onset and progression of diabetic nephropathy, oxidative stress is critical because it promotes inflammation and creates a vicious cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, tubular atrophy, and proteinuria. There are various treatments for diabetic nephropathy, and each has its own limitations. Although the exact mechanisms by which polyphenols suppress diabetic nephropathy have not been elucidated, they may have antioxidant, anti-inflammatory, antifibrotic, and/or anti-apoptotic effects. They may also suppress endoplasmic reticulum stress and ameliorate mitochondrial dysfunction and dyslipidemia. Dietary polyphenols may be able to prevent the onset and slow the progression of diabetic nephropathy; they include resveratrol, quercetin, isoflavones, catechins, and anthocyanidins and have antioxidant, anti-inflammatory, antifibrotic, and anti-apoptotic effects through multiple molecular targets. Furthermore, they have shown few side effects. However, further research is needed to fully elucidate the molecular mechanisms by which polyphenols exert their effects and to clarify their optimal therapeutic use. In this review, we summarize reports published in the past five years regarding their effects on diabetic nephropathy and provide an overview of the potential of polyphenols.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469209/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of the Effects of Polyphenols on Diabetic Nephropathy.\",\"authors\":\"Masumi Kamiyama, Kotoe Iijima, Rema Okuzawa, Ruka Kawata, Airi Kimura, Yuki Shinohara, Ayana Shimada, Mika Yamanaka, Ayuka Youda, Tamami Iwamoto\",\"doi\":\"10.3390/cimb47090735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic nephropathy is a major challenge in medicine. While a variety of mechanisms underlie the onset and progression of diabetic nephropathy, oxidative stress is critical because it promotes inflammation and creates a vicious cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, tubular atrophy, and proteinuria. There are various treatments for diabetic nephropathy, and each has its own limitations. Although the exact mechanisms by which polyphenols suppress diabetic nephropathy have not been elucidated, they may have antioxidant, anti-inflammatory, antifibrotic, and/or anti-apoptotic effects. They may also suppress endoplasmic reticulum stress and ameliorate mitochondrial dysfunction and dyslipidemia. Dietary polyphenols may be able to prevent the onset and slow the progression of diabetic nephropathy; they include resveratrol, quercetin, isoflavones, catechins, and anthocyanidins and have antioxidant, anti-inflammatory, antifibrotic, and anti-apoptotic effects through multiple molecular targets. Furthermore, they have shown few side effects. However, further research is needed to fully elucidate the molecular mechanisms by which polyphenols exert their effects and to clarify their optimal therapeutic use. In this review, we summarize reports published in the past five years regarding their effects on diabetic nephropathy and provide an overview of the potential of polyphenols.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb47090735\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090735","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanisms of the Effects of Polyphenols on Diabetic Nephropathy.
Diabetic nephropathy is a major challenge in medicine. While a variety of mechanisms underlie the onset and progression of diabetic nephropathy, oxidative stress is critical because it promotes inflammation and creates a vicious cycle that induces podocyte injury, extracellular matrix accumulation, glomerulosclerosis, epithelial-mesenchymal transition, tubular atrophy, and proteinuria. There are various treatments for diabetic nephropathy, and each has its own limitations. Although the exact mechanisms by which polyphenols suppress diabetic nephropathy have not been elucidated, they may have antioxidant, anti-inflammatory, antifibrotic, and/or anti-apoptotic effects. They may also suppress endoplasmic reticulum stress and ameliorate mitochondrial dysfunction and dyslipidemia. Dietary polyphenols may be able to prevent the onset and slow the progression of diabetic nephropathy; they include resveratrol, quercetin, isoflavones, catechins, and anthocyanidins and have antioxidant, anti-inflammatory, antifibrotic, and anti-apoptotic effects through multiple molecular targets. Furthermore, they have shown few side effects. However, further research is needed to fully elucidate the molecular mechanisms by which polyphenols exert their effects and to clarify their optimal therapeutic use. In this review, we summarize reports published in the past five years regarding their effects on diabetic nephropathy and provide an overview of the potential of polyphenols.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.