{"title":"母体免疫激活和自身免疫性疾病、环境毒物和叶酸代谢对自闭症谱系障碍的神经发育影响。","authors":"George Ayoub","doi":"10.3390/cimb47090721","DOIUrl":null,"url":null,"abstract":"<p><p>Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social communication, repetitive behaviors, and sensory sensitivities. While genetic factors contribute significantly to ASD risk, a growing body of evidence implicates environmental exposures and immune-mediated mechanisms in the etiology and severity of ASD. This review synthesizes peer-reviewed findings on (1) maternal immune activation, (2) environmental toxicant co-exposures, (3) maternal autoimmune disease, and (4) cerebral folate deficiency (via folate receptor alpha autoantibodies), detailing their mechanistic contributions to core and associated ASD symptoms. Collectively, these findings illuminate converging neuroimmune and metabolic pathways that, when disrupted in utero, substantially alter the developmental trajectory of the brain and increase the likelihood of ASD. Such interruptions leading to developmental changes can trigger immune activation from environmental sources of infection and pollution, with these triggers compounded in cases of autoimmune disease or cerebral folate deficiency. Understanding these mechanisms provides a foundation for early identification, stratified risk assessment, and the development of targeted prenatal interventions. Thus, a lesson we learn from autism is that neurodevelopmental disorders should be understood as the product of combined genetic vulnerabilities and modifiable prenatal and postnatal influences. Further exploration of this framework will open paths for precision intervention and prevention.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469020/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder.\",\"authors\":\"George Ayoub\",\"doi\":\"10.3390/cimb47090721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social communication, repetitive behaviors, and sensory sensitivities. While genetic factors contribute significantly to ASD risk, a growing body of evidence implicates environmental exposures and immune-mediated mechanisms in the etiology and severity of ASD. This review synthesizes peer-reviewed findings on (1) maternal immune activation, (2) environmental toxicant co-exposures, (3) maternal autoimmune disease, and (4) cerebral folate deficiency (via folate receptor alpha autoantibodies), detailing their mechanistic contributions to core and associated ASD symptoms. Collectively, these findings illuminate converging neuroimmune and metabolic pathways that, when disrupted in utero, substantially alter the developmental trajectory of the brain and increase the likelihood of ASD. Such interruptions leading to developmental changes can trigger immune activation from environmental sources of infection and pollution, with these triggers compounded in cases of autoimmune disease or cerebral folate deficiency. Understanding these mechanisms provides a foundation for early identification, stratified risk assessment, and the development of targeted prenatal interventions. Thus, a lesson we learn from autism is that neurodevelopmental disorders should be understood as the product of combined genetic vulnerabilities and modifiable prenatal and postnatal influences. Further exploration of this framework will open paths for precision intervention and prevention.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469020/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb47090721\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090721","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neurodevelopmental Impact of Maternal Immune Activation and Autoimmune Disorders, Environmental Toxicants and Folate Metabolism on Autism Spectrum Disorder.
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social communication, repetitive behaviors, and sensory sensitivities. While genetic factors contribute significantly to ASD risk, a growing body of evidence implicates environmental exposures and immune-mediated mechanisms in the etiology and severity of ASD. This review synthesizes peer-reviewed findings on (1) maternal immune activation, (2) environmental toxicant co-exposures, (3) maternal autoimmune disease, and (4) cerebral folate deficiency (via folate receptor alpha autoantibodies), detailing their mechanistic contributions to core and associated ASD symptoms. Collectively, these findings illuminate converging neuroimmune and metabolic pathways that, when disrupted in utero, substantially alter the developmental trajectory of the brain and increase the likelihood of ASD. Such interruptions leading to developmental changes can trigger immune activation from environmental sources of infection and pollution, with these triggers compounded in cases of autoimmune disease or cerebral folate deficiency. Understanding these mechanisms provides a foundation for early identification, stratified risk assessment, and the development of targeted prenatal interventions. Thus, a lesson we learn from autism is that neurodevelopmental disorders should be understood as the product of combined genetic vulnerabilities and modifiable prenatal and postnatal influences. Further exploration of this framework will open paths for precision intervention and prevention.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.