{"title":"KMO抑制改善癫痫小鼠癫痫发作和抑郁样行为而不加重认知障碍。","authors":"Jingwen Xu, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu, Lun Cai","doi":"10.3390/cimb47090705","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (<i>p</i> < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, <i>p</i> < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, <i>p</i> < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (<i>p</i> < 0.05) KMO inhibition rectifies the neurotoxic-neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468293/pdf/","citationCount":"0","resultStr":"{\"title\":\"KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice.\",\"authors\":\"Jingwen Xu, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu, Lun Cai\",\"doi\":\"10.3390/cimb47090705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (<i>p</i> < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, <i>p</i> < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, <i>p</i> < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (<i>p</i> < 0.05) KMO inhibition rectifies the neurotoxic-neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468293/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb47090705\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090705","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice.
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (p < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, p < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, p < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (p < 0.05) KMO inhibition rectifies the neurotoxic-neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.