Menglin Zhou, Wuming Deng, Bingbing Dai, Qingqing Yu, Wei Zhou, Xiaofei Zan, Xi Song
{"title":"油菜籽壳裂机制的研究进展","authors":"Menglin Zhou, Wuming Deng, Bingbing Dai, Qingqing Yu, Wei Zhou, Xiaofei Zan, Xi Song","doi":"10.3390/cimb47090755","DOIUrl":null,"url":null,"abstract":"<p><p>Silique dehiscence is a critical biological phenomenon in rapeseed production that significantly influences seed maturity, harvesting efficiency, and ultimately yield. As one of the world's most important oilseed crops, studying the mechanisms underlying silique dehiscence in rapeseed (<i>Brassica napus</i> L.) not only aids in understanding fundamental principles of plant development but also provides a scientific basis for optimizing agricultural production practices. Silique dehiscence occurs naturally during the maturation process of rapeseed, with the timing and extent of this phenomenon directly affecting seed harvesting efficiency. This paper reviews the research progress regarding the mechanization of canola production, which enhances harvesting efficiency by enabling timely harvest coordination to minimize pre-harvest shattering losses and reduce post-harvest seed damage. Additionally, it addresses the factors influencing pod shattering, the process of pod shattering, the genes associated with this phenomenon, and the molecular mechanisms underlying pod shattering. These findings establish a foundation for a comprehensive understanding of pod shattering in canola.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469059/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanisms of Silique Dehiscence in Rapeseed: A Review of Research Progress.\",\"authors\":\"Menglin Zhou, Wuming Deng, Bingbing Dai, Qingqing Yu, Wei Zhou, Xiaofei Zan, Xi Song\",\"doi\":\"10.3390/cimb47090755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Silique dehiscence is a critical biological phenomenon in rapeseed production that significantly influences seed maturity, harvesting efficiency, and ultimately yield. As one of the world's most important oilseed crops, studying the mechanisms underlying silique dehiscence in rapeseed (<i>Brassica napus</i> L.) not only aids in understanding fundamental principles of plant development but also provides a scientific basis for optimizing agricultural production practices. Silique dehiscence occurs naturally during the maturation process of rapeseed, with the timing and extent of this phenomenon directly affecting seed harvesting efficiency. This paper reviews the research progress regarding the mechanization of canola production, which enhances harvesting efficiency by enabling timely harvest coordination to minimize pre-harvest shattering losses and reduce post-harvest seed damage. Additionally, it addresses the factors influencing pod shattering, the process of pod shattering, the genes associated with this phenomenon, and the molecular mechanisms underlying pod shattering. These findings establish a foundation for a comprehensive understanding of pod shattering in canola.</p>\",\"PeriodicalId\":10839,\"journal\":{\"name\":\"Current Issues in Molecular Biology\",\"volume\":\"47 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469059/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Issues in Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/cimb47090755\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47090755","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mechanisms of Silique Dehiscence in Rapeseed: A Review of Research Progress.
Silique dehiscence is a critical biological phenomenon in rapeseed production that significantly influences seed maturity, harvesting efficiency, and ultimately yield. As one of the world's most important oilseed crops, studying the mechanisms underlying silique dehiscence in rapeseed (Brassica napus L.) not only aids in understanding fundamental principles of plant development but also provides a scientific basis for optimizing agricultural production practices. Silique dehiscence occurs naturally during the maturation process of rapeseed, with the timing and extent of this phenomenon directly affecting seed harvesting efficiency. This paper reviews the research progress regarding the mechanization of canola production, which enhances harvesting efficiency by enabling timely harvest coordination to minimize pre-harvest shattering losses and reduce post-harvest seed damage. Additionally, it addresses the factors influencing pod shattering, the process of pod shattering, the genes associated with this phenomenon, and the molecular mechanisms underlying pod shattering. These findings establish a foundation for a comprehensive understanding of pod shattering in canola.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.